Skip to main content
Log in

In vitro synergistic anti-prion effect of cholesterol ester modulators in combination with chlorpromazine and quinacrine

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Our studies on the role of cholesterol in prion infection/replication showed that brains and peripheral cells of sheep susceptible-to or suffering-from Scrapie were characterized by an altered cholesterol homeostasis, and that drugs affecting cholesterol ester pool were endowed with selective anti-prion activity in N2a cell lines infected with the 22L and RML prion strains. In these prion-infected N2a cell lines, we now report increased anti-prion activity of dual-drug combinations consisting of cholesterol ester modulators associated with prion inhibitors. Synergism was obtained with the cholesterol ester modulators everolimus, pioglitazone, progesterone, and verapamil associated with the anti-prion chlorpromazine, and with everolimus and pioglitazone associated with the anti-prion quinacrine. In addition, comparative lipid analyses in prion-infected vs. uninfected N2a cells, demonstrated a derangement of type and distribution of cholesterol ester, free cholesterol, and triglyceride pools in the infected cells. Single-drug treatments differently affected synthesis of the various lipid forms, whereas combined drug treatments appeared to restore a lipid profile similar to that of the untreated-uninfected cells. We conclude that the anti-prion synergistic effects of cholesterol ester modulators associated with the cholesterol-interfering anti-prion drugs chlorpromazine and quinacrine may arise from the ability of combined drugs to re-establish lipid homeostasis in the prion-infected cells. Overall, these data suggest that inhibition of prion replication can be readily potentiated by combinatorial drug treatments and that steps of cholesterol/cholesterol ester metabolism may represent suitable targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PrPres :

PK-resistant prion protein

TL:

total lipids

TC:

total cholesterol

FC:

free cholesterol

NL:

neutral lipids

CE:

cholesterol esters

TG:

triglycerides

PL:

phospholipids

DX 500:

dextran sulphate 500,000

TA:

tannic acid

CP:

chlorpromazine

Q:

quinacrine

EVE:

everolimus

PIO:

pioglitazone

PG:

progesterone

VP:

verapamil

References

  1. Prusiner S.B., Prions, Proc. Natl. Acad. Sci. USA, 1998, 95, 13363–13383

    Article  CAS  PubMed  Google Scholar 

  2. Trevitt C.R., Collinge J., A systematic review of prion therapeutics in experimental models, Brain, 2006, 129, 2241–2265

    Article  PubMed  Google Scholar 

  3. Doh-ura K., Ishikawa K., Murakami-Kubo I., Sasaki K., Mohri S., Race R., et al., Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models, J. Virol., 2004, 78, 4999–5006

    Article  CAS  PubMed  Google Scholar 

  4. Bone I., Belton L., Walker A.S., Darbyshire J. Intraventricular pentosan polysulphate in human prion diseases: an observational study in the UK, Eur. J. Neurol., 2008, 15, 458–464

    Article  CAS  PubMed  Google Scholar 

  5. Love R., Old drugs to treat new variant Creutzfeldt-Jakob disease, Lancet, 2001, 358, 563–574

    Article  CAS  PubMed  Google Scholar 

  6. Stewart L.A., Rydzewska L.H.M., Keogh G.F., Knight R.S.G., Systematic review of therapeutic interventions in human prion disease, Neurology, 2008, 70, 1272–1281

    Article  PubMed  Google Scholar 

  7. Collinge J., Gorham M., Hudson F., Kennedy A., Keogh G., Pal S., et al., Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial, Lancet Neurol., 2009, 8, 334–344

    Article  CAS  PubMed  Google Scholar 

  8. Geschwind M.D., Clinical trials for prion disease: difficult challenges, but hope for the future, Lancet Neurol., 2009, 8, 304–306

    Article  PubMed  Google Scholar 

  9. CJD (Creutzfeldt-Jakob disease) quinacrine study. (accessed March 4, 2009). http://clinicaltrials.gov/ct2/show/NCT00183092

  10. Kocisko D., Caughey B., Morrey J.D., Race R.E., Enhanced antiscrapie effect using combination drug treatment, Antimicrob. Agents Chemother., 2006, 50, 3447–3449

    Article  CAS  PubMed  Google Scholar 

  11. Pani A., Abete C., Norfo C., Mulas C., Putzolu M., Laconi S., et al., Cholesterol metabolism in brain and skin fibroblasts from Sarda breed sheep with scrapie resistant or susceptible genotype, Am. J. Infect. Dis., 2007, 3, 143–150

    CAS  Google Scholar 

  12. Pani A., Abete C., Norfo C., Mulas C., Putzolu M., Laconi S., et al., Accumulation of CE in ex vivo lymphocytes from scrapie-susceptible sheep and in scrapie-infected mouse neuroblastoma cell lines, Am. J. Infect. Dis., 2007, 3, 165–168

    Article  Google Scholar 

  13. Orrù C.D., Abete C., Cannas M.D., Mulas C., Norfo C., Mandas A., et al., ACAT-1, Cav-1 and PrP expression in scrapie susceptible and resistant sheep, Cent. Eur. J. Biol., 2010, 5, 31–37

    Article  Google Scholar 

  14. Pani A., Norfo C., Abete C., Mulas C., Putzolu M., Laconi S., et al., Anti-prion activity of cholesterol esterification modulators: a comparative study in ex vivo sheep fibroblasts and lymphocytes and in mouse neuroblastoma cell lines, Antimicrob. Agents Chemother., 2007, 51, 4141–4147

    Article  CAS  PubMed  Google Scholar 

  15. Doh-ura K., Iwaki T., Caughey B., Lysosomotropic Agents and Cysteine Protease Inhibitors Inhibit Scrapie-Associated Prion Protein Accumulation, J. Virol., 2000, 74, 4894–4897

    Article  CAS  PubMed  Google Scholar 

  16. Caughey B., Raymond G.J., Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells, J. Virol., 1993, 67, 643–650

    CAS  PubMed  Google Scholar 

  17. Caughey B., Brown K., Raymond G.J., Katzenstein G.E., Thresher W., Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red, J. Virol., 1994, 68, 2135–2141

    CAS  PubMed  Google Scholar 

  18. Kocisko D.A., Engel A.L., Harbuck K., Arnold K.M., Olsen E.A., Raymond L.D., et al., Comparison of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse and sheep scrapie, Neurosci. Lett., 2005, 388, 106–111

    Article  CAS  PubMed  Google Scholar 

  19. Suhnel J., Evaluation of synergism or antagonism for the combined action of antiviral agents, Antiv. Res., 1990, 13, 23–40

    Article  CAS  Google Scholar 

  20. Pani A., Batetta B., Putzolu M., Sanna F., Spano O., Piras S., et al., MDR1, cholesterol esterification and cell growth: a comparative study in normal and multidrug-resistant KB cell lines, Cell. Mol. Life Sci., 2000, 57, 1094–1102

    Article  CAS  PubMed  Google Scholar 

  21. Greenspan P., Fowler S.D., Spectrofluorometric studies of the lipid probe, Nile red, J. Lipid Res., 1985, 26, 781–789

    CAS  PubMed  Google Scholar 

  22. Diaz G., Batetta B., Sanna F., Uda S., Reali C., Angius F., et al., Lipid droplet changes in proliferating and quiescent 3T3 fibroblasts, Histochem. Cell Biol., 2008, 129, 611–621

    Article  CAS  PubMed  Google Scholar 

  23. Kocisko D.A., Baron G.S., Rubenstein R., Chen J., Kuizon S., Caughey B., New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products, J. Virol., 2003, 77, 10288–10296

    Article  CAS  PubMed  Google Scholar 

  24. Pani A., Dessì S., (Eds.), Cell Growth and Cholesterol Esters, New York: Landes Bioscence & Kluwer Academic Press Publishers, 2004

    Google Scholar 

  25. Batetta B., Mulas M.F., Sanna F., Putzolu M., Bonatesta R.R., Casperi-Campani A., et al., Role of cholesterol ester pathway in the control of cell cycle in human aortic smooth muscle cells, FASEB J., 2003, 17, 746–748

    CAS  PubMed  Google Scholar 

  26. Varghese Z., Fernando R., Moorhead J.F., Powis S.H., Ruan X.Z., Effects of sirolimus on mesangial cell cholesterol homeostasis: a novel mechanism for its action against lipid-mediated injury in renal allografts, Am. J. Physiol. Renal Physiol., 2005, 289, 43–48

    Article  Google Scholar 

  27. Freeman D.A., Romero A., Effects of troglitazone on intracellular cholesterol distribution and cholesterol-dependent cell functions in MA-10 Leydig tumor cells, Biochem. Pharmacol., 2003, 66, 307–313

    Article  CAS  PubMed  Google Scholar 

  28. Debry P., Nash E.A., Neklason D.W., Metherall J.E., Role of multidrug resistance P-glycoproteins in cholesterol esterification, J. Biol. Chem., 1997, 272, 1026–1031

    Article  CAS  PubMed  Google Scholar 

  29. Butler J.D., Banchette-Mackie J., Golden E., O’Neill R.R., Carstea G., Roff C.F., et al., Progesterone blocks cholesterol translocation from lysosomes, J. Biol. Chem., 1992, 267, 23797–23805

    CAS  PubMed  Google Scholar 

  30. Barret A., Tagliavini F., Forloni G., Bate C., Salmona M., Colombo L., et al., Evaluation of quinacrine treatment for prion diseases, J. Virol., 2003, 77, 8462–8469

    Article  CAS  PubMed  Google Scholar 

  31. Klingenstein R., Lober S., Kujala P., Godsave S., Leliveld S.R., Gmeiner P., et al., Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments, J. Neurochem., 2006, 98, 748–759

    Article  CAS  PubMed  Google Scholar 

  32. FernØ J., Skrede S., O Vik-Mo A., Havic B., Steen V.D., Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs, BMC Neuroscience, 2006, 7, 69–80

    Article  PubMed  Google Scholar 

  33. Vik-Mo A.O., Ferno J., Skrede S., Steen V.M., Psychotropic drugs up-regulate the expression of cholesterol transport proteins including ApoE in cultured human CNS- and liver cells, BMC Pharmacol., 2009, 9, 10

    Article  PubMed  Google Scholar 

  34. Kumar R., McClain D., Young R., Carlson G.A., Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells, J. Gen. Virol., 2008, 89, 1525–1532

    Article  CAS  PubMed  Google Scholar 

  35. Bach C., Gilch S., Rost R., Greenwood A.D., Horsch M., Hajj G.N., et al., Prion-induced activation of cholesterogenic gene expression by Srebp2 in neuronal cells, J. Biol. Chem., 2009, 284, 31260–31269

    Article  CAS  PubMed  Google Scholar 

  36. Taylor D.R., Hooper N.M., Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-β proteins, Sem. Cell. Develop. Biol., 2007, 18, 638–648

    Article  CAS  Google Scholar 

  37. Bate C., Tayebi M., Williams A., Cholesterol esterification reduces the neurotoxicity of prions, Neuropharmacology, 2008, 54, 1247–1253

    Article  CAS  PubMed  Google Scholar 

  38. Ghaemmaghami S., Phuan P.W., Perkins B., Ullman J., May B.C., Cohen F.E., et al., Cell division modulates prion accumulation in cultured cells, Proc. Natl. Acad. Sci. USA., 2007, 104, 17971–17976

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Pani.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Orrù, C.D., Cannas, M.D., Vascellari, S. et al. In vitro synergistic anti-prion effect of cholesterol ester modulators in combination with chlorpromazine and quinacrine. cent.eur.j.biol. 5, 151–165 (2010). https://doi.org/10.2478/s11535-009-0070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0070-9

Keywords

Navigation