Skip to main content
Log in

CLERC and centrosomal leucine-rich repeat proteins

  • Mini-Review
  • Published:
Central European Journal of Biology

Abstract

The centrosome functions as the microtubule-organizing center and plays a vital role in organizing spindle poles during mitosis. Recently, we identified a centrosomal protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. The bibliography as well as database searches provided evidence that the human proteome contains at least seven centrosomal leucine-rich repeat proteins including CLERC. CLERC and four other centrosomal leucine-rich repeat proteins contain the SDS22-like leucine-rich repeat motifs, whereas the remaining two proteins contain the RI-like and the cysteine-containing leucine-rich repeat motifs. Individual leucine-rich repeat motifs are highly conserved and present in evolutionarily diverse organisms. Here, we provide an overview of CLERC and other centrosomal leucine-rich repeat proteins, their structures, their evolutionary relationships, and their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson E.B., The cell in development and inheritance, Macmillan & co., ltd., 1896

  2. Chretien D., Buendia B., Fuller S.D., Karsenti E., Reconstruction of the centrosome cycle from cryoelectron micrographs, J. Struct. Biol., 1997, 120, 117–133

    Article  CAS  PubMed  Google Scholar 

  3. Piel M., Meyer P., Khodjakov A., Rieder C.L., Bornens M., The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells, J. Cell Biol., 2000, 149, 317–330

    Article  CAS  PubMed  Google Scholar 

  4. Bobinnec Y., Khodjakov A., Mir L.M., Rieder C.L., Edde B., Bornens M., Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells, J. Cell Biol., 1998, 143, 1575–1589

    Article  CAS  PubMed  Google Scholar 

  5. Bornens M., Centrosome composition and microtubule anchoring mechanisms, Curr. Opin. Cell Biol., 2002, 14, 25–34

    Article  CAS  PubMed  Google Scholar 

  6. Fukasawa K., Introduction. Centrosome, Oncogene, 2002, 21, 6140–6145

    Article  CAS  PubMed  Google Scholar 

  7. Rieder C.L., Faruki S., Khodjakov A., The centrosome in vertebrates: more than a microtubule-organizing center, Trends Cell Biol., 2001, 11, 413–419

    Article  CAS  PubMed  Google Scholar 

  8. Zhong X., Pfeifer G.P., Xu X., Microcephalin encodes a centrosomal protein, Cell Cycle, 2006, 5, 457–458

    CAS  PubMed  Google Scholar 

  9. Doxsey S., Zimmerman W., Mikule K., Centrosome control of the cell cycle, Trends Cell Biol., 2005, 15, 303–311

    Article  CAS  PubMed  Google Scholar 

  10. Andersen J.S., Wilkinson C.J., Mayor T., Mortensen P., Nigg E.A., Mann M., Proteomic characterization of the human centrosome by protein correlation profiling, Nature, 2003, 426, 570–574

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson C.J., Andersen J.S., Mann M., Nigg E.A., A proteomic approach to the inventory of the human centrosome, In: Nigg E.A., (Ed.), Centrosomes in Development and Disease, Wiley InterScience, Weinheim, 2005, 125–142

    Google Scholar 

  12. Gomez-Ferreria M.A., Rath U., Buster D.W., Chanda S.K., Caldwell J.S., Rines D.R., et al., Human cep192 is required for mitotic centrosome and spindle assembly, Curr. Biol., 2007, 17, 1960–1966

    Article  CAS  PubMed  Google Scholar 

  13. Graser S., Stierhof Y.D., Nigg E.A., Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion, J. Cell Sci., 2007, 120, 4321–4331

    Article  CAS  PubMed  Google Scholar 

  14. Gromley A., Jurczyk A., Sillibourne J., Halilovic E., Mogensen M., Groisman I., et al., A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase, J. Cell Biol., 2003, 161, 535–545

    Article  CAS  PubMed  Google Scholar 

  15. Guarguaglini G., Duncan P.I., Stierhof Y.D., Holmstrom T., Duensing S., Nigg E.A., The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles, Mol. Biol. Cell, 2005, 16, 1095–1107

    Article  CAS  PubMed  Google Scholar 

  16. Salisbury J.L., Suino K.M., Busby R., Springett M., Centrin-2 is required for centriole duplication in mammalian cells, Curr. Biol., 2002, 12, 1287–1292

    Article  CAS  PubMed  Google Scholar 

  17. Strnad P., Leidel S., Vinogradova T., Euteneuer U., Khodjakov A., Gonczy P., Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev Cell, 2007, 13, 203–213

    Article  CAS  PubMed  Google Scholar 

  18. Xie Z., Moy L.Y., Sanada K., Zhou Y., Buchman J.J., Tsai L.H., Cep120 and TACCs Control Interkinetic Nuclear Migration and the Neural Progenitor Pool, Neuron, 2007, 56, 79–93

    Article  CAS  PubMed  Google Scholar 

  19. Zhao W.M., Seki A., Fang G., Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis, Mol. Biol. Cell, 2006, 17, 3881–3896

    Article  CAS  PubMed  Google Scholar 

  20. Zou C., Li J., Bai Y., Gunning W.T., Wazer D.E., Band V., et al., Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication, J. Cell Biol., 2005, 171, 437–445

    Article  CAS  PubMed  Google Scholar 

  21. Muto Y., Yoshioka T., Kimura M., Matsunami M., Saya H., Okano Y., An evolutionarily conserved leucine-rich repeat protein CLERC is a centrosomal protein required for spindle pole integrity, Cell Cycle, 2008, 7, 2738–2748

    CAS  PubMed  Google Scholar 

  22. Kobe B., Kajava A.V., The leucine-rich repeat as a protein recognition motif, Curr. Opin. Struct. Biol., 2001, 11, 725–732

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi N., Takahashi Y., Putnam F.W., Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich alpha 2-glycoprotein of human serum, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, 1906–1910

    Article  CAS  PubMed  Google Scholar 

  24. Kobe B., Deisenhofer J., The leucine-rich repeat: a versatile binding motif, Trends Biochem. Sci., 1994, 19, 415–421

    Article  CAS  PubMed  Google Scholar 

  25. Kobe B., Deisenhofer J., Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats, Nature, 1993, 366, 751–756

    Article  CAS  PubMed  Google Scholar 

  26. Kobe B., Kajava A.V., When protein folding is simplified to protein coiling: the continuum of solenoid protein structures, Trends Biochem. Sci., 2000, 25, 509–515

    Article  CAS  PubMed  Google Scholar 

  27. Bella J., Hindle K.L., McEwan P.A., Lovell S.C., The leucine-rich repeat structure, Cell. Mol. Life Sci., 2008, 65, 2307–2333

    Article  CAS  PubMed  Google Scholar 

  28. Matsushima N., Tachi N., Kuroki Y., Enkhbayar P., Osaki M., Kamiya M., et al., Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases, Cell. Mol. Life Sci., 2005, 62, 2771–2791

    Article  CAS  PubMed  Google Scholar 

  29. Hohenester E., Hussain S., Howitt J.A., Interaction of the guidance molecule Slit with cellular receptors, Biochem. Soc. Trans., 2006, 34, 418–421

    Article  CAS  PubMed  Google Scholar 

  30. Matilla A., Radrizzani M., The Anp32 family of proteins containing leucine-rich repeats, Cerebellum, 2005, 4, 7–18

    Article  CAS  PubMed  Google Scholar 

  31. Liker E., Fernandez E., Izaurralde E., Conti E., The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain, EMBO J., 2000, 19, 5587–5598

    Article  CAS  PubMed  Google Scholar 

  32. Price S.R., Evans P.R., Nagai K., Crystal structure of the spliceosomal U2B″-U2A′ protein complex bound to a fragment of U2 small nuclear RNA, Nature, 1998, 394, 645–650

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y., Aulia S., Li L., Tang B.L., AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs, Brain Res Rev, 2006, 51, 265–274

    Article  CAS  PubMed  Google Scholar 

  34. Ko J., Kim E., Leucine-rich repeat proteins of synapses, J. Neurosci. Res., 2007, 85, 2824–2832

    Article  CAS  PubMed  Google Scholar 

  35. Gay N.J., Gangloff M., Structure and function of Toll receptors and their ligands, Annu. Rev. Biochem., 2007, 76, 141–165

    Article  CAS  PubMed  Google Scholar 

  36. Pancer Z., Cooper M.D., The evolution of adaptive immunity, Annu. Rev. Immunol., 2006, 24, 497–518

    Article  CAS  PubMed  Google Scholar 

  37. Hocking A.M., Shinomura T., McQuillan D.J., Leucine-rich repeat glycoproteins of the extracellular matrix, Matrix Biol., 1998, 17, 1–19

    Article  CAS  PubMed  Google Scholar 

  38. Nogales-Cadenas R., Abascal F., Diez-Perez J., Carazo J.M., Pascual-Montano A., CentrosomeDB: a human centrosomal proteins database, Nucl. Acids Res., 2009, 37, D175–D180

    Article  CAS  PubMed  Google Scholar 

  39. Eddy S.R., Profile hidden Markov models, Bioinformatics, 1998, 14, 755–763

    Article  CAS  PubMed  Google Scholar 

  40. Kajava A.V., Structural diversity of leucine-rich repeat proteins, J. Mol. Biol., 1998, 277, 519–527

    Article  CAS  PubMed  Google Scholar 

  41. Schneider T.D., Stephens R.M., Sequence logos: a new way to display consensus sequences, Nucl. Acids Res., 1990, 18, 6097–6100

    Article  CAS  PubMed  Google Scholar 

  42. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E., WebLogo: a sequence logo generator, Genome Res., 2004, 14, 1188–1190

    Article  CAS  PubMed  Google Scholar 

  43. Dutcher S.K., Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii, Traffic, 2003, 4, 443–451

    Article  CAS  PubMed  Google Scholar 

  44. Adams G.M., Wright R.L., Jarvik J.W., Defective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number, J. Cell Biol., 1985, 100, 955–964

    Article  CAS  PubMed  Google Scholar 

  45. Silflow C.D., LaVoie M., Tam L.W., Tousey S., Sanders M., Wu W., et al., The Vfl1 Protein in Chlamydomonas localizes in a rotationally asymmetric pattern at the distal ends of the basal bodies, J. Cell Biol., 2001, 153, 63–74

    Article  CAS  PubMed  Google Scholar 

  46. Keryer G., Ris H., Borisy G.G., Centriole distribution during tripolar mitosis in Chinese hamster ovary cells, J. Cell Biol., 1984, 98, 2222–2229

    Article  CAS  PubMed  Google Scholar 

  47. Sluder G., Rieder C.L., Centriole number and the reproductive capacity of spindle poles, J. Cell Biol., 1985, 100, 887–896

    Article  CAS  PubMed  Google Scholar 

  48. Di Fiore B., Ciciarello M., Mangiacasale R., Palena A., Tassin A.M., Cundari E., et al., Mammalian RanBP1 regulates centrosome cohesion during mitosis, J. Cell Sci., 2003, 116, 3399–3411

    Article  PubMed  Google Scholar 

  49. Thein K.H., Kleylein-Sohn J., Nigg E.A., Gruneberg U., Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity, J. Cell Biol., 2007, 178, 345–354

    Article  CAS  PubMed  Google Scholar 

  50. Wang X., Yang Y., Duan Q., Jiang N., Huang Y., Darzynkiewicz Z., et al., sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1, Dev. Cell, 2008, 14, 331–341

    Article  CAS  PubMed  Google Scholar 

  51. McDonald K., Morphew M.K., Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos, Microsc. Res. Tech., 1993, 24, 465–473

    Article  CAS  PubMed  Google Scholar 

  52. Moritz M., Braunfeld M.B., Fung J.C., Sedat J.W., Alberts B.M., Agard D.A., Three-dimensional structural characterization of centrosomes from early Drosophila embryos, J. Cell Biol., 1995, 130, 1149–1159

    Article  CAS  PubMed  Google Scholar 

  53. Perkins L.A., Hedgecock E.M., Thomson J.N., Culotti J.G., Mutant sensory cilia in the nematode Caenorhabditis elegans, Dev. Biol., 1986, 117, 456–487

    Article  CAS  PubMed  Google Scholar 

  54. Lee M.J., Gergely F., Jeffers K., Peak-Chew S.Y., Raff J.W., Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour, Nat. Cell Biol., 2001, 3, 643–649

    Article  CAS  PubMed  Google Scholar 

  55. Andersen S.S., Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18, Trends Cell Biol., 2000, 10, 261–267

    Article  CAS  PubMed  Google Scholar 

  56. Guasch G., Mack G.J., Popovici C., Dastugue N., Birnbaum D., Rattner J.B., et al., FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33), Blood, 2000, 95, 1788–1796

    CAS  PubMed  Google Scholar 

  57. McCollum D., Gould K.L., Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN, Trends Cell Biol., 2001, 11, 89–95

    Article  CAS  PubMed  Google Scholar 

  58. Vorobjev I.A., Chentsov Yu S., Centrioles in the cell cycle. I. Epithelial cells, J. Cell Biol., 1982, 93, 938–949

    Article  CAS  PubMed  Google Scholar 

  59. Gromley A., Yeaman C., Rosa J., Redick S., Chen C.T., Mirabelle S., et al., Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission, Cell, 2005, 123, 75–87

    Article  CAS  PubMed  Google Scholar 

  60. Paweletz N., On the function of the “Flemming body” during division of animal cells, Naturwissenschaften, 1967, 54, 533–535

    Article  CAS  PubMed  Google Scholar 

  61. Fielding A.B., Schonteich E., Matheson J., Wilson G., Yu X., Hickson G.R., et al., Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis, EMBO J., 2005, 24, 3389–3399

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z., Indjeian V.B., McManus M., Wang L., Dynlacht B.D., CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells, Dev. Cell, 2002, 3, 339–350

    Article  CAS  PubMed  Google Scholar 

  63. Tsang W.Y., Spektor A., Luciano D.J., Indjeian V.B., Chen Z., Salisbury J.L., et al., CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability, Mol. Biol. Cell, 2006, 17, 3423–3434

    Article  CAS  PubMed  Google Scholar 

  64. Spektor A., Tsang W.Y., Khoo D., Dynlacht B.D., Cep97 and CP110 suppress a cilia assembly program, Cell, 2007, 130, 678–690

    Article  CAS  PubMed  Google Scholar 

  65. Wheatley D.N., Wang A.M., Strugnell G.E., Expression of primary cilia in mammalian cells, Cell Biol. Int., 1996, 20, 73–81

    Article  CAS  PubMed  Google Scholar 

  66. Xue J.C., Goldberg E., Identification of a novel testis-specific leucine-rich protein in humans and mice, Biol. Reprod., 2000, 62, 1278–1284

    Article  CAS  PubMed  Google Scholar 

  67. Morgan G.W., Denny P.W., Vaughan S., Goulding D., Jeffries T.R., Smith D.F., et al., An evolutionarily conserved coiled-coil protein implicated in polycystic kidney disease is involved in basal body duplication and flagellar biogenesis in Trypanosoma brucei, Mol. Cell. Biol., 2005, 25, 3774–3783

    Article  CAS  PubMed  Google Scholar 

  68. Sun Z., Amsterdam A., Pazour G.J., Cole D.G., Miller M.S., Hopkins N., A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney, Development, 2004, 131, 4085–4093

    Article  CAS  PubMed  Google Scholar 

  69. Kishimoto N., Cao Y., Park A., Sun Z., Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways, Dev. Cell, 2008, 14, 954–961

    Article  CAS  PubMed  Google Scholar 

  70. Serluca F.C., Xu B., Okabe N., Baker K., Lin S.Y., Sullivan-Brown J., et al., Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning, Development, 2009, 136, 1621–1631

    Article  CAS  PubMed  Google Scholar 

  71. Oshimori N., Ohsugi M., Yamamoto T., The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity, Nat. Cell Biol., 2006, 8, 1095–1101

    Article  CAS  PubMed  Google Scholar 

  72. Pereira G., Hofken T., Grindlay J., Manson C., Schiebel E., The Bub2p spindle checkpoint links nuclear migration with mitotic exit, Mol. Cell, 2000, 6, 1–10

    Article  CAS  PubMed  Google Scholar 

  73. Oshimori N., Li X., Ohsugi M., Yamamoto T., Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation, EMBO J., 2009, 28, 2066–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Muto.

About this article

Cite this article

Muto, Y., Okano, Y. CLERC and centrosomal leucine-rich repeat proteins. cent.eur.j.biol. 5, 1–10 (2010). https://doi.org/10.2478/s11535-009-0061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0061-x

Keywords

Navigation