Skip to main content
Log in

Animal model of Alzheimer’s disease: characteristics of EEG and memory

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

We studied the effects of aggregated amyloid β-peptide Aβ25–35 on spatial memory and the spectral-correlational characteristics of EEG of both the dorsal hippocampus and the frontal cortex both in adult and aged rats at the early stage of Aβ25–35 action. Spatial memory was characterized using a novel cognitive test. A decrease in low-frequency theta band oscillations in the dorsal hippocampus and the frontal cortex was observed. The mean coefficient of EEG cross-correlation between these structures was significantly reduced at the early stage of Aβ25–35 action both in adult and aged rats. In addition, we found that one month after Aβ25–35 injection spatial memory was impaired. These results suggest that the decrease in low-frequency theta band oscillations and the weakening of binding between the dorsal hippocampus and the frontal cortex under the action of Aβ25–35 may be an underlying cause of the typical memory breakdown associated with the Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haass C., Selkoe D.J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell Biol., 2007, 8, 101–112

    Article  CAS  PubMed  Google Scholar 

  2. Turner P.R., O’Connor K., Tate W.P., Abraham W.C., Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory, Prog. Neurobiol., 2003, 70, 1–32

    Article  CAS  PubMed  Google Scholar 

  3. Yang J.L., Weissman L., Bohr V.A., Mattson M.P., Mitochondrial DNA damage and repair in neurodegenerative disorders, DNA Repair, 2008, 7, 1110–1120

    Article  CAS  PubMed  Google Scholar 

  4. Wang X., Su B., Zheng L., Perry G., Smith M.A., Zhu X., The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease, J. Neurochem., 2009, 109, 153–159

    Article  CAS  PubMed  Google Scholar 

  5. Wang J., Ikonen S., Gurevicius K., Groen T., Tanila H., Alteration of cortical EEG in mice carrying mutated human APP transgene, Brain Research, 2002, 943, 181–190

    Article  CAS  PubMed  Google Scholar 

  6. Stern A., Bacskai B.J., Hickey G. A., Attenello F.J., Lombardo J.A., Hyman B.T., Cortical Synaptic Integration In Vivo Is Disrupted by Amyloid-β Plaques, J. Neurosci., 2004, 24, 4535–4540

    Article  CAS  PubMed  Google Scholar 

  7. Stepanichev M.Y., Onufriev M.V., Mitrokhina O.S., Moiseeva Y.V., Lazareva N.A., Victorov I.V., et al., Neurochemical, behavioral, and neuromorphological effects of central administration of beta-amyloid peptide (25–35) in rat, Neurochemictry, 2000, 17, 278–293, (in Russian)

    CAS  Google Scholar 

  8. Klementiev B., Novikova T., Novitskaya V., Walmod P.S., Dmytriyeva O., Pakkenberg B., et al., A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta (25–35), Neuroscience, 2007, 145, 209–224

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura S., Murayama N., Noshita T., Annoura H., Ohno T., Progressive brain dysfunction following intracerebroventricular infusion of beta(1–42)-amyloid peptide, Brain Res., 2001, 912, 128–136

    Article  CAS  PubMed  Google Scholar 

  10. Christensen R., Marcussen A.B., Wörtwein G., Knudsen G.M., Aznar S., Abeta (1–42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels, Exp. Neurol., 2008, 210, 164–171

    Article  CAS  PubMed  Google Scholar 

  11. Uhlhaas P.J., Singer W., Neural Synchrony in Brain Review Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology, Neuron, 2006, 52, 155–168

    Article  CAS  PubMed  Google Scholar 

  12. Sirota A., Montgomery S., Fujisawa S., Isomura Y., Zugaro M., Buzsáki G., Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm, Neuron, 2008, 60, 683–697

    Article  CAS  PubMed  Google Scholar 

  13. Delbeuck X., Van der Linden M., Collette F., Alzheimer’s disease as a disconnection syndrome?, Neuropsychol. Rev., 2003, 13, 79–92

    Article  CAS  PubMed  Google Scholar 

  14. Jeong J., EEG dynamics in patients with Alzheimer’s disease, Clin. Neurophysiol., 2004, 115, 1490–1505

    Article  PubMed  Google Scholar 

  15. Grady C.L., Furey M.L., Pietrini P., Horwitz B., Rapoport S.I., Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease, Brain, 2001, 124, 739–756

    Article  CAS  PubMed  Google Scholar 

  16. Bokde A.L., Lopez-Bayo P., Meindl T., Pechler S., Born C., Faltraco F., et al., Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment, Brain, 2006, 129, 1113–1124

    Article  CAS  PubMed  Google Scholar 

  17. Koistinaho M., Ort M., Cimadevilla J.M., Vondrous R., Cordell B., Koistinaho J., et al., Specific spatial learning deficits become severe with age in beta-amyloid precursor protein transgenic mice that harbor diffuse beta-amyloid deposits but do not form plaques, Proc. Natl. Acad. Sci. USA, 2001, 98, 14675–14680

    Article  CAS  PubMed  Google Scholar 

  18. Liu L., Planel E., Wen Y., Bretteville A., Krishnamurthy P., Wang L., et al., A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment, Neurobiol Dis., 2008, 31, 46–57

    Article  CAS  PubMed  Google Scholar 

  19. von Linstow Roloff E., Platt B., Riedel G., No spatial working memory deficit in beta-amyloid-exposed rats. A longitudinal study, Prog. Neuropsychopharmacol. Biol Psychiatry, 2002, 26, 955–970

    Article  Google Scholar 

  20. Podolski I.Ya., Podlubnaya Z.A, Kosenko E.A., Mugantseva E.A., Makarova E.G., Marsagishvili L.G., et al., Fullerene Effects on Amyloid β-peptide Fibrillization in vitro and Performance of the Cognitive Task, J. Nanosci. Nanotechnol., 2007, 7, 1479–1485

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Alavez M., Chan S.L., Mattson M.P., Criado J.R., Electrophysiological and cerebrovascular effects of the alpha-secretase-derived form of amyloid precursor protein in young and middleaged rats, Brain Res., 2007, 1131, 112–117

    Article  PubMed  CAS  Google Scholar 

  22. Paxinos G., Watson Ch., The Rat Brain in Stereotaxic Coordinates. Sixth Edition, 2006

  23. Morris R.G.M., Development of a water-maze procedure for studing spatial learning in the rat, J. Neurosci. Meth., 1984, 11, 47–60

    Article  CAS  Google Scholar 

  24. Bland B.H., Colom L.V., Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex, Prog. Neurobiol., 1993, 41, 157–208

    Article  CAS  PubMed  Google Scholar 

  25. Vinogradova O.S., Expression, control, and probable functional significance of the neuronal thete-rhythm, Progr. Neurobiol., 1995, 45, 523–583

    Article  CAS  Google Scholar 

  26. Vinogradova O.S., Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information, Hippocampus, 2001, 11, 578–598

    Article  CAS  PubMed  Google Scholar 

  27. Maurer A.P., McNaughton B.L., Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons, Trends Neurosci., 2007, 30, 325–333

    Article  CAS  PubMed  Google Scholar 

  28. Klein W.L., Stine W.B. Jr, Teplow D.B., Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer’s disease, Neurobiol. Aging, 2004, 2, 569–580

    Article  CAS  Google Scholar 

  29. Hasselmo M.E., The role of acetylcholine in learning and memory, Curr. Opin. Neurobiol., 2006, 16, 710–715

    Article  CAS  PubMed  Google Scholar 

  30. Schliebs R., Arendt T., The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease, Neural Transm., 2006, 113, 1625–1644

    Article  CAS  Google Scholar 

  31. McKay B.E., Placzek A.N., Dani J.A., Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors, Biochem Pharmacol., 2007, 74, 1120–1133

    Article  CAS  PubMed  Google Scholar 

  32. Bierer L.M, Haroutunian V., Gabriel S., Knott P.J., Carlin L.S., Purohit D.P., et al., Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits, J. Neurochem., 1995, 64, 749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Mugantseva.

About this article

Cite this article

Mugantseva, E.A., Podolski, I.Y. Animal model of Alzheimer’s disease: characteristics of EEG and memory. cent.eur.j.biol. 4, 507–514 (2009). https://doi.org/10.2478/s11535-009-0054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0054-9

Keywords

Navigation