Skip to main content
Log in

Abdominal setae and midgut bacteria of the mudshrimp Pestarella tyrrhena

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

We investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felbeck H., Distel L.D., Prokaryotic symbionts of marine invertebrates, In: Dworkin M. et al., (Eds.), The prokaryotes: An evolving electronic resource for the microbiological community, 3rd edition, 2004, release Springer-Verlag, New York

    Google Scholar 

  2. Goffredi S.K., Warén A., Orphan J.V., Van Dover L.C., Vrijenhoek C.R., Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean, Appl. Environ. Microbiol., 2004 70, 3083–3090

    Article  Google Scholar 

  3. Blazejak A., Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta), MSc Dissertation, Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany, 2005

  4. Zbinden M., Cambon-Bonavita M.A., Occurrence of Deferribacterales and Entomoplasmatales in the deep-sea alvinocarid shrimp Rimicaris exoculata gut, FEMS Microbiol. Ecol., 2003, 46, 23–30

    Article  CAS  PubMed  Google Scholar 

  5. Gregory G., Dimijian M.D., Evolving together: the biology of symbiosis, Part 1, Proc. Bayl. Univ. Med. Cent., 2000, 13, 381–390

    Google Scholar 

  6. Amann R.I., Ludwig W., Schleifer K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, 59, 143–169

    CAS  PubMed  Google Scholar 

  7. Harris M.J., Seiderer J.L., Lucas I.M., Gut microflora of two saltmarsh detritivore thalassinid prawns, Ubogebia africana and Callianassa kraussi, Microb. Ecol., 1991, 21, 277–296

    Article  Google Scholar 

  8. Harris M.J., The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis, Microb. Ecol., 1993, 25, 195–231

    Article  Google Scholar 

  9. Lau W.W.Y., Jumars P.A., Armbrust E.V., Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae), Microb. Ecol., 2002, 43, 455–466

    Article  CAS  PubMed  Google Scholar 

  10. Gillan D.C., Dubilier N., Novel epibiotic Thiothrix bacterium on a marine amphipod, Appl. Environ. Microbiol., 2004, 70, 3772–3775

    Article  CAS  PubMed  Google Scholar 

  11. Payne M.S., Hall M.R., Sly L., Bourne D.G., Microbial diversity within early-stage cultured Panulirus ornatus phyllosomas, Appl. Environ. Microbiol., 2007, 73, 1940–1951

    Article  CAS  PubMed  Google Scholar 

  12. Dworschak P.C., The burrows of Callianassa tyrrhena (Petagna, 1792) (Decapoda: Thalassinidea), Mar. Ecol., 2001, 22, 155–166

    Article  Google Scholar 

  13. Dworschak P.C., Koller H., Abed-Navandii D., Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestaralla tyrrhena (Crustacea, Thalassinidea, Callianassidae), Mar. Biol., 2005, 148, 1369–1382

    Article  Google Scholar 

  14. Thessalou-Legaki M., Contribution of the study of ecology and biology of Callianassa tyrrhena (Petagna, 1972) (Crustacea, Decapoda, Thalassinidea), PhD thesis, University of Athens, Athens, Greece, 1987

    Google Scholar 

  15. Goffredi S.K., Jones W.J., Erhlich H., Apringer A., Vrijenhoek R.C., Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsute, Environ. Microbiol., 2008, 10, 2623–2634

    Article  CAS  PubMed  Google Scholar 

  16. Papaspyrou S., Gregersen T., Cox R.P., Thessalou-Legaki M., Kristensen E., Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea), Aquat. Microb. Ecol., 2005, 38, 181–190

    Article  Google Scholar 

  17. Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., et al., The RDP-II (Ribosomal Database Project), Nucl. Acids Res., 2001, 29, 173–174

    Article  CAS  PubMed  Google Scholar 

  18. Good I.J., The population frequencies of species and the estimation of population parameters, Biometrika, 1953, 43, 45–63

    Google Scholar 

  19. Kemp P.F., Aller J.Y. Estimating prokaryotic diversity: When are 16S rDNA libraries large enough?, Limnol. Oceanogr. Methods, 2004, 2, 114–125

    Google Scholar 

  20. Ohkuma M., Noda S., Hongoh Y., Kudo T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites, Biosci. Biotechnol. Biochem., 2002, 66, 78–84

    Article  CAS  PubMed  Google Scholar 

  21. Schmitt-Wagner D., Friedrich M., Wagner B., Brune A., Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.), Appl. Environ. Microbiol., 2003, 69, 6007–6017

    Article  CAS  PubMed  Google Scholar 

  22. Sears M.A., Gerhart D.J., Rittschof D., Antifouling agents from marine sponge Lissodendoryx isodictyalis carter, J. Chem. Ecol., 1990, 16, 791–799

    Article  Google Scholar 

  23. Nedashkovskaya O.I., Kim S.B., Han S.K., Lysenko A.M., Rohde M., Rhee M.S., et al., Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov., Int. J. Syst. Evol. Microbiol., 2004, 54, 1017–1023

    Article  CAS  PubMed  Google Scholar 

  24. Brazelton W.J., Schrenk M.O., Kelley D.S., Baross J.A., Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem, Appl. Environ. Microbiol., 2006, 72, 6257–6270

    Article  CAS  PubMed  Google Scholar 

  25. Koblížek M., Béjà O., Bidigare R.R., Christensen S., Benitez-Nelson B., Vetriani C., et al., Isolation and characterization of Erythrobacter sp. strains from the upper ocean, Arch. Microbiol., 2003, 180, 327–338

    Article  PubMed  Google Scholar 

  26. Green D.H., Llewellyn L.E., Negri A.P., Blackburn S.I., Bolch C.J.S., Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum, FEMS Microbiol. Ecol., 2004, 47, 345–357

    Article  CAS  PubMed  Google Scholar 

  27. Yurkov V.V., Beatty J.T., Aerobic anoxygenic phototrophic bacteria, Microbiol. Mol. Biol. Rev., 1998, 62, 695–724

    CAS  PubMed  Google Scholar 

  28. Oxley A.P., Shipton W., Owens L., McKay D., Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis, J. Appl. Microbiol., 2002, 93, 214–223

    Article  CAS  PubMed  Google Scholar 

  29. Thompson F.L., Iida T., Swings J., Biodiversity of vibrios, Microbiol. Mol. Biol. Rev., 2004, 68, 403–431

    Article  CAS  PubMed  Google Scholar 

  30. Colwell R.R., Global microbial ecology of Vibrio cholerae, In: Belnkin S., Colwell R.R., (Eds.), Oceans and health: pathogens in the marine environment, Springer, New York, 2005

    Google Scholar 

  31. Pinn E.H., Rogerson A., Atkinson R.J.A., Microbial flora associated with the digestive system of Upogebia stellata (Crustacea: Decapoda: Thalassinidea), J. Mar. Biol. Ass. U.K., 1997, 77, 1083–1096

    Article  Google Scholar 

  32. Inagaki F., Takai K., Kobayashi H., Nealson K.H., Horikoshi K., Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough, Int. J. Syst. Evol. Microbiol., 2003, 53, 1801–1804

    Article  CAS  PubMed  Google Scholar 

  33. Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki Y., Kojima S., Sasaki T., Suzuki M., Utsumi T., Watanabe H., et al., Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific, Appl. Environ. Microbiol., 2006, 72, 1388–1393

    Article  CAS  PubMed  Google Scholar 

  35. Madigan M.T., Martinko J.M., Parker J., Brock biology of microorganisms, 10th edition, 2003, Prentice Hall, Upper Saddle River

    Google Scholar 

  36. Breznak J.A., Leadbetter J.R., Termite gut spirochaetes, Prokaryotes, 2006, 7, 318–329

    Article  Google Scholar 

  37. Dubilier N., Amann R., Erseus C., Muyzer G., Park S.Y., Giere O., et al., Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida), Mar. Ecol. Progr. Ser., 1999, 178, 271–280

    Article  Google Scholar 

  38. Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476

    Article  CAS  PubMed  Google Scholar 

  39. Campbell B.J., Summer Engel A., Porter M.L., Takai K., The versatile ɛ-proteobacteria: key players in sulphidic habitats, Nat. Rev. Microbiol., 2006, 4, 458–468

    Article  CAS  PubMed  Google Scholar 

  40. Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., et al., Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov., Int. J. Syst. Evol. Microbiol., 2000, 50, 2109–2117

    CAS  PubMed  Google Scholar 

  41. Jones R.T., McCormick K.F., Martin A.P., Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns, Appl. Environ. Microbiol., 2008, 74, 1667–1670

    Article  CAS  PubMed  Google Scholar 

  42. Meziti A., Kormas K.A., Pancucci-Papadopoulou M.A., Thessalou-Legaki M., Bacterial phylotypes associated with the intestinal tract of the sea urchin Paracentrotus lividus and the ascidian Microcosmus sp., Russ. J. Mar. Biol., 2007, 33, 84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Ar. Kormas.

About this article

Cite this article

Demiri, A., Meziti, A., Papaspyrou, S. et al. Abdominal setae and midgut bacteria of the mudshrimp Pestarella tyrrhena . cent.eur.j.biol. 4, 558–566 (2009). https://doi.org/10.2478/s11535-009-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0053-x

Keywords

Navigation