Skip to main content
Log in

Collagen-bound LDL modifies endothelial cell adhesion to type V collagen: Implications for atherosclerosis

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Low density lipoprotein (LDL) is retained in the extracellular matrix of the arterial wall where it is considered to be atherogenic, but little is known about how cell adhesion to the matrix is affected by collagen-bound LDL. We tested the effect of native, oxidized and acetylated LDL reacted with adsorbed monomeric type I, III and V collagen on endothelial cell adhesion to collagen using a colorimetric adhesion assay. We found that none of the LDL species affected adhesion to type I and III collagen, but that collagen-bound native and acetylated LDL enhanced attachment to type V collagen, whereas bound oxidized LDL inhibited adhesion to this collagen. We therefore suggest that oxidized LDL associated with type V collagen in the arterial wall would favor de-endothelialization and contribute to atherogenesis and thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hajjar D.P., Haberland M.E., Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellular saboteurs, J. Biol. Chem., 1997, 272, 22975–22978

    Article  CAS  PubMed  Google Scholar 

  2. Chisolm G.M., Penn M.S., Oxidized Lipoproteins and Atherosclerosis, In: Fuster V., Ross R., Topol E.J., (Eds.), Atherosclerosis and Coronary Heart Disease, Lippincott Raven, Philadelphia, 1996

    Google Scholar 

  3. Ross R., Cell biology of atherosclerosis, Annu. Rev. Physiol., 1995, 57, 791–804

    Article  CAS  PubMed  Google Scholar 

  4. Thorne S.A., Abbot S.E., Winyard P.G., Blake D.R., Mills P.G., Extent of oxidative modification of low density lipoprotein determines the degree of cytotoxicity to human coronary artery cells, Heart, 1996, 75, 11–16

    Article  CAS  PubMed  Google Scholar 

  5. Auerbach, B.J., Bisgaier, C.L., Wolle J., Saxena U., Oxidation of low density lipoproteins greatly enhances their association with lipoprotein lipase anchored to endothelial cell matrix, J. Biol. Chem., 1996, 271, 1329–1335

    Article  CAS  PubMed  Google Scholar 

  6. Edwards I.J., Goldberg I.J., Parks J.S., Xu H., Wagner W.D., Lipoprotein lipase enhances the interaction of low density lipoproteins with arteryderived extracellular matrix proteoglycans, J. Lipid Res., 1993, 34, 1155–1163

    CAS  PubMed  Google Scholar 

  7. Kaplan M., Aviram M., Oxidized LDL binding to a macrophage-secreted extracellular matrix, Biochem. Biophys. Res. Commun., 1997, 237, 271–276

    Article  CAS  PubMed  Google Scholar 

  8. Saxena U., Klein M.G., Vanni T.M., Goldberg I.J., Lipo-protein lipase increases low density lipoprotein retention by subendothelial cell matrix, J. Clin. Invest., 1992, 89, 373–380

    Article  CAS  PubMed  Google Scholar 

  9. Tabas I., Li Y., Brocia R.W., Xu S.W., Swenson T.L., Williams K.J., Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation, J. Biol. Chem., 1993, 268, 20419–20432

    CAS  PubMed  Google Scholar 

  10. Pillarisetti S., Paka L., Obunike J.C., Berglund L., Goldberg I.J., Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix, J. Clin. Invest., 1997, 100, 867–874

    Article  CAS  PubMed  Google Scholar 

  11. Pentikainen M.O., Oorni K., Lassila R., Kovanen P.T., The proteoglycan decorin links low density lipoproteins with collagen type I, J. Biol. Chem., 1997, 272, 7633–7638

    Article  CAS  PubMed  Google Scholar 

  12. Hoover G.A., McCormick S., Kalant N., Interaction of native and cell-modified low density lipoprotein with collagen gel, Arteriosclerosis, 1988, 8, 525–534

    CAS  PubMed  Google Scholar 

  13. Kalant N., McCormick S., Parniak M.A., Effects of copper and histidine on oxidative modification of low density lipoprotein and its subsequent binding to collagen, Arterioscler. Thromb., 1991, 11, 1322–1329

    CAS  PubMed  Google Scholar 

  14. Jimi S., Sakata N., Matunaga A., Takebayashi S., Low density lipoproteins bind more to type I and III collagens by negative charge-dependent mechanisms than to type IV and V collagens, Atherosclerosis, 1994, 107, 109–116

    Article  CAS  PubMed  Google Scholar 

  15. Greilberger J., Schmut O., Jurgens G., In vitro interactions of oxidatively modified LDL with type I, II, III, IV and V collagen, laminin, fibronectin, and poly-D-lysine, Arterioscler. Thromb. Vascular Biol., 1997, 17, 2721–2728

    CAS  Google Scholar 

  16. Takei A., Huang Y., Lopes-Virella M.F., Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL, Atherosclerosis, 2001, 154, 79–86

    Article  CAS  PubMed  Google Scholar 

  17. Rauterberg J., Allmann H., Henkel W., Fietzek P.P., Isolation and characterization of CNBr derived peptides of the alpha1 (III) chain of pepsinsolubilized calf skin collagen, Hoppe Seylers Z. Physiol. Chem., 1976, 357, 1401–1407

    CAS  PubMed  Google Scholar 

  18. Rhodes R.K., Miller E.J., Physicochemical characterization and molecular organization of the collagen A and B chains, Biochemistry, 1978, 17, 3442–3448

    Article  CAS  PubMed  Google Scholar 

  19. Kleinveld H.A., Hak-Lemmers H.L., Stalenhoef A.F., Demacker P.N., Improved measurement of lowdensity-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein, Clin. Chem., 1992, 38, 2066–2072

    CAS  PubMed  Google Scholar 

  20. Thomas C.E., Jackson R.L., Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins, J. Pharmacol. Exp. Ther., 1991, 256, 1182–1188

    CAS  PubMed  Google Scholar 

  21. Zhang M.Y., Lin R.C., Oxidative-modified and acetylated low-density lipoproteins differ in their effects on cholesterol synthesis and stimulate synthesis of apolipoprotein E in rat peritoneal macrophages by different mechanisms, Metabolism, 1994, 43, 1523–1530

    Article  CAS  PubMed  Google Scholar 

  22. Kueng W., Silber E., Eppenberger U., Quantification of cells cultured on 96-well plates, Anal. Biochem., 1989, 182, 16–19

    Article  CAS  PubMed  Google Scholar 

  23. De-Rijke Y.B., Biessen E.A., Vogelezang C.J., van-Berkel T.J., Binding characteristics of scavenger receptors on liver endothelial and Kupffer cells or modified low-density lipoproteins, Biochem. J., 1994, 304, 69–73

    CAS  PubMed  Google Scholar 

  24. Tanaka T., Nishikawa A., Tanaka Y., Nakamura H., Kodama T., Imanishi T., Doi T., Synthetic collagenlike domain derived from the macrophage scavenger receptor binds acetylated low-density lipoprotein in vitro, Protein Eng., 1996, 9, 307–313

    Article  CAS  PubMed  Google Scholar 

  25. Lougheed M., Steinbrecher U.P., Mechanism of uptake of copper-oxidized low density lipoprotein in macrophages is dependent on its extent of oxidation, J. Biol. Chem., 1996, 271, 11798–11805

    Article  CAS  PubMed  Google Scholar 

  26. Birk D.E., Fitch J.M., Babiarz J.P., Doane K.J., Linsenmayer T.F., Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter, J. Cell Sci., 1990, 95, 649–657

    CAS  PubMed  Google Scholar 

  27. Marchant J.K., Hahn R.A., Linsenmayer T.F., Birk D.E., Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of cornealspecific fibril morphology, J. Cell Biol., 1996, 135, 1415–1426

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto K., Hatai M., Yaoi Y., Inhibition of cell adhesion by type V collagen, Cell. Struct. Funct., 1991, 16, 391–397

    Article  CAS  PubMed  Google Scholar 

  29. Saelman E.U., Nieuwenhuis H.K., Hese K.M., de-Groot P.G., Heijnen H.F., Sage E.H., et al., Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin), Blood, 1994, 83, 1244–1250

    CAS  PubMed  Google Scholar 

  30. Sakata N., Jimi S., Takebayashi S., Marques M.A., Type V collagen represses the attachment, spread, and growth of porcine vascular smooth muscle cells in vitro, Exp. Mol. Pathol., 1992, 56, 20–36

    Article  CAS  PubMed  Google Scholar 

  31. Underwood P.A., Bean P.A., Whitelock J.M., Inhibition of endothelial cell adhesion and proliferation by extracellular matrix from vascular smooth muscle cells: role of type V collagen, Atherosclerosis, 1998, 141, 141–152

    Article  CAS  PubMed  Google Scholar 

  32. Ziats N.P., Anderson J.M., Human vascular endothelial cell attachment and growth inhibition by type V collagen, J. Vasc. Surg., 1993, 17, 710–718

    Article  CAS  PubMed  Google Scholar 

  33. Murata K., Motoyama T., Collagen species in various sized human arteries and their changes with intimal proliferation, Artery, 1990, 17, 96–106

    CAS  PubMed  Google Scholar 

  34. Katsuda S., Okada Y., Minamoto T., Oda Y., Matsui Y., Nakanishi I., Collagens in human atherosclerosis. Immunohistochemical analysis using collagen typespecific antibodies, Arterioscler. Thromb., 1992, 12, 494–502

    CAS  PubMed  Google Scholar 

  35. Sage H., Pritzl P., Bornstein P., Characterization of cell matrix associated collagens synthesized by aortic endothelial cells in culture, Biochemistry, 1981, 20, 436–442

    Article  CAS  PubMed  Google Scholar 

  36. Shekhonin B.V., Domogatsky S.P., Muzykantov V.R., Idelson G.L., Rukosuev V.S., Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics, Coll. Relat. Res., 1985, 5, 355–368

    CAS  PubMed  Google Scholar 

  37. Shekhonin B.V., Domogatsky S.P., Idelson G.L., Koteliansky V.E., Rukosuev V.S., Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries, Atherosclerosis, 1987, 67, 9–16

    Article  CAS  PubMed  Google Scholar 

  38. Van Zanten G.H., de Graaf S., Slootweg P.J., Heijnen H.F., Connolly T.M., de Groot P.G., Sixma J.J., Increased platelet deposition on atherosclerotic coronary arteries, J. Clin. Invest., 1994, 93, 615–632

    Article  PubMed  Google Scholar 

  39. Virmani R., Kolodgie F.D., Burke A.P., Farb A., Schwartz S.M., Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions, Arterioscler. Thromb. Vasc. Biol., 2000, 20, 1262–1275

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lorkowski.

About this article

Cite this article

Lorkowski, S., Rauterberg, J., Harrach-Ruprecht, B. et al. Collagen-bound LDL modifies endothelial cell adhesion to type V collagen: Implications for atherosclerosis. cent.eur.j.biol. 4, 536–542 (2009). https://doi.org/10.2478/s11535-009-0047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0047-8

Keywords

Navigation