Skip to main content

Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn

Abstract

Antioxidant capacity and phenolic compounds (phenolic acids and anthocyanins) of four berry fruits (strawberry, Saskatoon berry, raspberry and wild blueberry), chokecherry and seabuckthorn were compared in the present study. Total phenolic content and total anthocyanin content ranged from 22.83 to 131.88 g/kg and 3.51 to 13.13 g/kg, respectively. 2,2-Diphenyl-1-picryhydrazyl free radical scavenging activity ranged from 29.97 to 78.86%. Chokecherry had the highest antioxidant capacity when compared with berry fruits and seabuckthorn. The highest caffeic acid, gallic acid and trans-cinnamic acid levels were found in chokecherry (6455 mg/kg), raspberry (1129 mg/kg) and strawberry (566 mg/kg), respectively. Caffeic acid was also the major phenolic acid in Saskatoon berry (2088 mg/kg) and wild blueberry (1473 mg/kg). The findings that chokecherry has very high antioxidant capacity and caffeic acid levels, are useful for developing novel value-added antioxidant products and also provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants.

This is a preview of subscription content, access via your institution.

References

  1. Ames B.M., Shigens M.K., Hagen T.M., Oxidants, antioxidants and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 7915–7922

    Article  CAS  PubMed  Google Scholar 

  2. Halliwell B., Free radical, antioxidants and human disease: curiosity, cause or consequence, Lancet, 1994, 344, 721–724

    Article  CAS  PubMed  Google Scholar 

  3. Ribolin E., Norat T., Epidemiological evidence of the protective effect of fruit and vegetables on cancer risk, Am. J. Clin. Nutr., 2003, 78, 559S–569S

    Google Scholar 

  4. Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of fresh apples, Nature, 2000, 405, 903–904

    CAS  PubMed  Google Scholar 

  5. Arts I.C., Hollman P.C., Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr., 2005, 81, 243S–255S

    Google Scholar 

  6. Kallio H., Yang B., Peippo P., Effects of different origins and harvesting time on Vitamin C, tocopherols and tocotrienols in seabuckthorn (Hippophane rhamnoides) berries, J. Agric. Food Chem., 2002, 50, 6136–6142

    Article  CAS  PubMed  Google Scholar 

  7. Scalzo J., Politi A., Pellegrini N., Mezzetti B., Battino M., Plant genotype affects total antioxidant capacity and phenolic contents in fruit, Nutrition, 2005, 21, 207–213

    Article  CAS  PubMed  Google Scholar 

  8. Aaby K., Ekeberg D., Skrede G., Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity, J. Agric. Food Chem., 2007, 55, 4395–4406

    Article  CAS  PubMed  Google Scholar 

  9. Tulipani S., Mezzetti B., Capocasa F., Bompadre S., Beekwilder J., Vos C.H.R.D., et al., Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes, J. Agric. Food Chem., 2008, 56, 696–704

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y., Seeram N.P., Lee R., Feng L., Heber D., Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties, J. Agric. Food Chem., 2008, 56, 670–675

    Article  CAS  PubMed  Google Scholar 

  11. Slimestad R., Solheim H., Anthocyanins from black currants (Ribes nigrum L.), J. Agric. Food Chem., 2002, 50, 3228–3231

    Article  CAS  PubMed  Google Scholar 

  12. McDougall G.J., Dobson P., Smith P., Blake A., Stewart D., Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system, J. Agric. Food Chem., 2005, 53, 5896–5904

    Article  CAS  PubMed  Google Scholar 

  13. Zhou K., Yu L., Effects of extraction solvent on wheat bran antioxidant activity estimation, LWT-Food Sci. Technol., 2004, 37, 717–721

    CAS  Google Scholar 

  14. Kresty L.A., Howell A.B., Baird M., Cranberry proanthocyanidins induce apoptosis and inhibit acid-induced proliferation of human esophageal adenocarcinoma cells, J. Agric. Food Chem., 2008, 56, 676–680

    Article  CAS  PubMed  Google Scholar 

  15. Seeram N.P., Berry fruits for cancer prevention: current status and future prospects, J. Agric. Food Chem., 2008, 56, 630–635

    Article  CAS  PubMed  Google Scholar 

  16. Li W., Wei C., White P.J., Beta T., High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes, J. Agric. Food Chem., 2007, 55, 291–298

    Article  CAS  PubMed  Google Scholar 

  17. Li W., Pickard M.D., Beta T., Evaluation of antioxidant activity and electronic taste and aroma properties of antho-beers from purple wheat grain, J. Agric. Food Chem., 2007, 55, 8958–8966

    Article  CAS  PubMed  Google Scholar 

  18. Guisti M.M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy, In: Wrolstad R.E., (Ed.), Current Protocols in Food Analytical Chemistry, John Wiley & Sons Inc, New York, 2000

    Google Scholar 

  19. Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30

    Article  CAS  Google Scholar 

  20. Li W., Pickard M.D., Beta T., Effect of thermal processing on antioxidant properties of purple wheat bran, Food Chem., 2007, 104, 1080–1086

    Article  CAS  Google Scholar 

  21. Garcia-Alonso F.J., Guidarelli A., Periago M.J., Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tertbutylhydroperoxide in U937 cells: the role of iron chelation, J. Nutr. Biochem., 2007, 18, 457–466

    Article  CAS  PubMed  Google Scholar 

  22. Yi W., Akoh C.C., Fischer J., Krewer G., Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis, Food Res. Int., 2006, 39, 628–638

    Article  CAS  Google Scholar 

  23. Kay C.D., Holub B.J., The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects, Br. J. Nutr., 2002, 88, 389–398

    Article  CAS  PubMed  Google Scholar 

  24. Kang S.Y., Seeram N.P., Nair M.G., Bourquin L.D., Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells, Cancer Lett., 2003, 194, 13–19

    Article  CAS  PubMed  Google Scholar 

  25. Cooke D., Schwarz M., Boocock D., Winterhalter P., Steward W.P., Gescher A.J., et al., Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis — Relationship with tissue anthocyanin levels, Int. J. Cancer, 2006, 119, 2213–2220

    Article  CAS  PubMed  Google Scholar 

  26. Singletary K.W., Jung K.J., Giusti M., Anthocyaninrich grape extract blocks breast cell DNA damage, J. Med. Food, 2007, 10, 244–251

    Article  CAS  PubMed  Google Scholar 

  27. Zhao C., Monica G., Malik M., Moyer M.P., Magnuson B.A., Effects of commercial anthocyaninrich extracts on colonic cancer and nontumorigenic colonic cell growth, J. Agric. Food Chem., 2004, 52, 6122–6128

    Article  CAS  PubMed  Google Scholar 

  28. Zhou K., Yu L., Antioxidant properties of bran extracts from Trego wheat grown at different locations, J. Agric. Food Chem., 2004, 52, 1112–1117

    Article  CAS  PubMed  Google Scholar 

  29. Onyeneho S.N., Hettiarachchy N.S., Antioxidant activity of durum wheat bran, J. Agric. Food Chem., 1992, 40, 1496–1500

    Article  CAS  Google Scholar 

  30. Villaño D., Fernández-Pachón M.S., Troncoso A.M., García-Parrilla M.C., Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro, Anal. Chim. Acta, 2005, 538, 391–398

    Article  Google Scholar 

  31. Sánchez-Moreno C., Larrauri J.A., Saura-Calixto F., A procedure of measure the antiradical efficiency of polyphenols, J. Sci. Food Agric., 1998, 76, 270–276

    Article  Google Scholar 

  32. Chung T.-W., Moon S.-K, Chang Y.-C, Ko J.-H., Lee Y.-C., Cho G., et al., Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism, FASEB J., 2004, 18, 1670–1681

    Article  CAS  PubMed  Google Scholar 

  33. Kang K.A, Lee K.H., Zhang R., Piao M., Chae S., Kim K.N., et al., Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells, Biol. Pharm. Bull., 2006, 29, 1820–1824

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka T., Kojima T., Kawamori T., Wang A., Suzui M., Okamoto K., et al., Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolic caffeic, ellagic, chlorogenic and ferulic acids, Carcinogenesis, 1993, 14, 1321–1325

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Z., Moghadasian M.H., Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review, Food Chem., 2008, 109, 691–702

    Article  CAS  Google Scholar 

  36. Abdel-Wahab M.H., Ei-Mahdy M.A., Abd-Ellah M.F., Helal G.K., Khalifa F., Hamada F.M.A., Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart, Pharmacol Res., 2003, 48, 461–465

    Article  CAS  PubMed  Google Scholar 

  37. Luceri C., Giannini L., Lodovici M., Antonucci E., Abbate R., Masini E., et al., p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo, Br. J. Nutr., 2007, 97, 458–463

    Article  CAS  PubMed  Google Scholar 

  38. Yip E.C.H., Chan A.S.L., Pang H., Tam Y.K., Wong Y.H., Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism, Cell Biol. Toxicol., 2006, 22, 293–302

    Article  CAS  PubMed  Google Scholar 

  39. Faried A., Kurnia D., Faried L.S., Usman N., Miyazaki T., Kato H., et al, Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines, Int. J. Oncol., 2007, 30, 605–613

    CAS  PubMed  Google Scholar 

  40. Yoshioka K., Kataoka T., Hayashi T., Hasegawa M., Ishi Y., Hibasami H., Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines, Oncol. Rep., 2000, 7, 1221–1223

    CAS  PubMed  Google Scholar 

  41. Ohno Y., Fukuda K., Takemura G., Toyota M., Watanabe M., Yasuda N., et al., Induction of apoptosis by gallic acid in lung cancer cells, Anti-Cancer Drugs, 1999, 10, 845–851

    Article  CAS  PubMed  Google Scholar 

  42. Rastogi N., Goh K.S., Horgen L., Barrow W.W., Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against mycobacterium tuberculosis, FEMS Immunol. Med. Microbiol., 1998, 21, 149–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trust Beta.

About this article

Cite this article

Li, W., Hydamaka, A.W., Lowry, L. et al. Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. cent.eur.j.biol. 4, 499–506 (2009). https://doi.org/10.2478/s11535-009-0041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0041-1

Keywords

  • Berry fruits
  • Chokecherry
  • Antioxidant capacity
  • Radical scavenging
  • Phenolic compounds
  • Anthocyanin
  • Phenolic acids