Central European Journal of Biology

, Volume 4, Issue 2, pp 196–203 | Cite as

Novel bacteriocins produced by Geobacillus stearothermophilus

  • Karina Pokusaeva
  • Nomeda Kuisiene
  • Dziuginta Jasinskyte
  • Kazimiera Rutiene
  • Jordana Saleikiene
  • Donaldas Chitavichius
Research Article


Four novel heat-stable bacteriocin-like substances were found to be produced by Geobacillus stearothermophilus strains isolated from oil-wells in Lithuania. Geobacillus stearothermophilus 32A, 17, 30 and 31 strains were identified as producers of bacteriocins with bactericidal activity against closely related Geobacillus species and several pathogenic strains: Bacillus cereus DSM 12001 and Staphylococcus haemolyticus P903. The secretion of the analysed bacteriocins started during early logarithmic growth and dropped sharply after the culture entered the stationary phase of growth. The antimicrobial activity of the bacteriocins against sensitive indicator cells disappeared after treatment with proteolytic enzymes, indicating their proteinaceous nature. Bacteriocins were stable throughout the pH range between 4 and 10, and no loss in activity was noted following temperature exposures up to 100°C. Direct detection of antibacterial activity on SDS-PAGE suggests that the inhibitory peptides have a molecular weight of 6–7.5 kDa. Such bacteriocins with broad activity spectra, including antipathogenic action, are attractive to the biotechnology industry as they could be used as antimicrobial agents in medicine, agriculture and food products.


Bacteriocin Geobacillus stearothermophilus Antimicrobial peptide Partial purification Thermocin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cherif A., Chehimi S., Limem F., Hansen B.M., Hendriksen N.B., Daffonchio, D., et al., Detection and Characterization of a Novel Bacteriocin Entomocin 9, and Safety Evaluation of its Producer, Bacillus thuringiensis ssp. entomocidus HD9, J. Appl. Microbiol., 2003, 95, 990–1000PubMedCrossRefGoogle Scholar
  2. [2]
    Cotter P.D., Hill C., Ross R.P., Bacteriocins: developing innate immunity for food, Nature Rev. Microbiol., 2005, 3, 777–788CrossRefGoogle Scholar
  3. [3]
    Klaenhammer T.R., Genetics of bacteriocins produced by lactic acid bacteria, FEMS Microbiol. Rev., 1993 12, 39–85Google Scholar
  4. [4]
    Jack R.W., Tagg J.R., Ray B., Bacteriocins of grampositive bacteria, Microbiol. Rev., 1995 59, 171–200Google Scholar
  5. [5]
    Joergen M.C., Klaenhammer T.R., Characterization and purification of helviticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481, J. Bacteriol., 1986 167, 439–446Google Scholar
  6. [6]
    Bonade A., Murelli F., Vescovo M., Scolari, G., Partial Characterization of a Bacteriocin Produced by Lactobacillus helveticus, Appl. Environ. Microbiol., 2001 33, 153–158Google Scholar
  7. [7]
    Kemperman R., Kuipers A., Karsens H., Nauta A., Kuipers O., Kok J., Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574, Appl. Environ. Microbiol., 2003 69, 1589-1597CrossRefGoogle Scholar
  8. [8]
    Franz C.M., van Belkum M.J., Holzapfel W.H., Abriouel H., Gálvez A., Diversity of enterococcal bacteriocins and their grouping in a new classification scheme, FEMS Microbiol. Rev., 2007 31, 293–310PubMedCrossRefGoogle Scholar
  9. [9]
    Martirani L., Varcamonti M., Naclerio G., De Felice M., Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by thermophilic strain of Bacillus licheniformis, Microb. Cell Fact., 2002 1, 1–5CrossRefGoogle Scholar
  10. [10]
    Leroy F., Foulquie Moreno M.R., De Vuyst L., Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation in press, Int. J. Food Microbiol., 2003 88, 235–240CrossRefGoogle Scholar
  11. [11]
    Papagianni M., Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function and applications, Biotechnol. Adv., 2003, 21, 465–499PubMedCrossRefGoogle Scholar
  12. [12]
    Tahiri I., Desbiens M., Benech R., Kheadr E., Lacroix S., Thibault S., et al.,Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35, Int. J. Food Microbiol., 2004 97, 123–136CrossRefGoogle Scholar
  13. [13]
    Mauriello G., De Luca E., La Storia A., Villani F., Ercolini D., Antimicrobial activity of a nisin-activated plastic film for food packaging, Lett. Appl. Microbiol., 2005 41, 464–469Google Scholar
  14. [14]
    Cherif A., Ouzari H., Daffonchio D., Cherif H., Slama K.B., Hassen A., et al.,Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil, Lett. Appl. Microbiol., 2001 32, 243–247Google Scholar
  15. [15]
    Oscariz J.C., Lasa I., Pisabarro A.G., Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity, FEMS Microbiol. Lett., 1999 178, 337–341Google Scholar
  16. [16]
    Oscariz J.C., Pisabarro A.G., Characterization and mechanism of action of cerein 7, a novel bacteriocin produced by Bacillus cereus Bc7, J. Appl. Microbiol., 2000 89, 361–369CrossRefGoogle Scholar
  17. [17]
    Kirkup B.C. Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications, Curr. Med. Chem., 2006, 13, 3335–3350PubMedCrossRefGoogle Scholar
  18. [18]
    Novotny J.F., Perry J.J., Characterization of bacteriocins from two strains of Bacillus thermoleovorans, a thermophilic hydrocarbonutilizing species, Appl. Environ. Microbiol. 1992, 58, 2393–2396PubMedGoogle Scholar
  19. [19]
    Shafia F., Thermocins of Bacillus stearothermophilus, J. Bacteriol., 1966, 92, 524–525PubMedGoogle Scholar
  20. [20]
    Leejeerajumnean A., Ames J.M., Owens J.D., Effect of ammonia on the growth of Bacillus species and some other bacteria, Lett. Appl. Microbiol., 2000 30, 385–389Google Scholar
  21. [21]
    Pugsley A.P., Oudega B., Methods of studying colicins and their plasmids, In: Hardy G.H. (Ed.), Plasmids, a Practical Approach, IRL Press, Oxford, 1987Google Scholar
  22. [22]
    Hyronimus B., Le Marrec C., Urdaci M.C., Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4, J. Appl. Microbiol., 1998 85, 42–50CrossRefGoogle Scholar
  23. [23]
    Bradford M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976 72, 248–254Google Scholar
  24. [24]
    Hechard Y., Derijard B., Leteller F., Cenatiempo Y., Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides, J. Gen. Microbiol., 1992, 138 2725–2731Google Scholar
  25. [25]
    Cleveland J., Montiville T.J., Nes I.F., Chikindas M.L., Bacteriocins: safe, natural antimicrobial for food preservation, Int. J. Food Microbiol., 2001 71, 1–20CrossRefGoogle Scholar
  26. [26]
    Rosenberg I.M., Protein Analysis and Purification, 2nd ed., Benchtop Techniques, Birkhäuser, Boston, 2005Google Scholar
  27. [27]
    Garneau S., Martin N.I., Vederas J.C., Two-peptide bacteriocins produced by lactic acid bacteria, Biochimie, 2002, 84, 577–592PubMedCrossRefGoogle Scholar
  28. [28]
    O’sullivan L., Ross R.P., Hill C., Potential of bacteriocin-producing lactic acid bacteria for improvement in food safety and quality, Biochimie, 2002, 84, 593–604PubMedCrossRefGoogle Scholar
  29. [29]
    Twomey D., Ross R.P., Ryan M., Meaney B., Hill C., Lantibiotics produced by lactic acid bacteria: structure, function and applications, Antonie van Leeuwenhoek, 2002, 82, 165–185PubMedCrossRefGoogle Scholar
  30. [30]
    Nascimento J.S., Ceotto H., Nascimento S.B., Giambiagi-deMarval M., Santos K.R.N., Bastos M.C.F., Bacteriocins as alternative agents for control of multiresistant staphylococcal strains, Lett. Appl. Microbiol., 2006 42, 215–221Google Scholar
  31. [31]
    Martin J.F., Liras P., Organization and expression of genes involved in the biosynthesis of lantibiotics and other secondary metabolites, Annu. Rev. Microbiol., 1989 43, 173–206Google Scholar
  32. [32]
    Altena K., Guder A., Cramer C., Bierbaum G., Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster, Appl. Environ. Microbiol., 2000 66, 2565–2571CrossRefGoogle Scholar
  33. [33]
    Pattnaik P., Kaushik J.K., Grover S., Batish V.K., Purification and characterization of a bacteriocinlike compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo, J. Appl. Microbiol., 2001, 91, 636–645PubMedCrossRefGoogle Scholar
  34. [34]
    Brusilow W.S.A., Nelson D.L., Improved purification and some properties of megacin Cx, a bacteriocin produced by Bacillus megaterium, J. Biol. Chem., 1981 256, 159–164Google Scholar
  35. [35]
    Ahern M., Verschueren S., van Sinderen D, Isolation and Characterization of a Novel Bacteriocin Produced by Bacillus thuringiensis Strain B439, FEMS Microbiol. Lett., 2003 220, 127–131Google Scholar
  36. [36]
    Yule R., Barridge B.D., Isolation and characterization of a bacteriocin produced by Bacillus stearothermophilus strain NU-10, Can. J. Microbiol., 1976 22, 1743–1750Google Scholar
  37. [37]
    Carolissen-Mackay V., Arendse G., Hastings J.W., Purification of bacteriocins of lactic acid bacteria: problems and pointers, Int. J. Food Microbiol., 1997 34, 1–16CrossRefGoogle Scholar
  38. [38]
    Lee K.-H., Jun K.-D., Kim W.-S., Paik H.-D., Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus, Lett. Appl. Microbiol., 2001 32, 146–151CrossRefGoogle Scholar
  39. [39]
    Paik H.D., Bae S.S., Park S.H., Pan J.G., Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis, J. Ind. Microbiol. Biotechnol. 1997, 19, 294–298PubMedCrossRefGoogle Scholar
  40. [40]
    Stein T., Borchert S., Conrad B., Feesche J., Hofemeister B., Entian K-D., Two different lantibiotic - like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3, J. Bacteriol., 2002 184, 1703–1711CrossRefGoogle Scholar
  41. [41]
    Naclerio G., Ricca E., Sacco M., De Felice M., Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus, Appl. Environ. Microbiol., 1993 59, 4313–4316Google Scholar
  42. [42]
    Zhu W.M., Liu W., Wu D.Q., Isolation and characterization of a new bacteriocin from Lactobacillus gasseri KT7, J. Appl. Microbiol., 2000 88, 877–886CrossRefGoogle Scholar
  43. [43]
    Crupper S.S., Gies J.A., Iandolo J.J., Purification and characterization of Staphylococcin BacR1, a broad -spectrum bacteriocin, Appl. Environ. Microbiol., 1997 63, 4185–4190Google Scholar
  44. [44]
    Zamfir M., Callewaert R., Cornea P.C., Savu L., Vatafu I., De Vuyst L. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB 801, J. Appl. Microbiol., 1999 87, 923–931CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karina Pokusaeva
    • 1
  • Nomeda Kuisiene
    • 1
  • Dziuginta Jasinskyte
    • 1
  • Kazimiera Rutiene
    • 2
  • Jordana Saleikiene
    • 2
  • Donaldas Chitavichius
    • 1
  1. 1.Department of Plant Physiology and Microbiology, Faculty of Natural SciencesVilnius UniversityVilniusLithuania
  2. 2.National Public Health Laboratory CentreVilniusLithuania

Personalised recommendations