Skip to main content
Log in

A squalene epoxidase from Nigella sativa participates in saponin biosynthesis and mediates terbinafine resistance in yeast

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Squalene epoxidase catalyzes the formation of 2,3-oxidosqualene from squalene and in plants is the last enzyme common to all biosynthetic pathways leading to an array of triterpene derivatives like phytosterols, brassinosteroid phytohormones or saponins. In this work, we present a squalene epoxidase gene (NSSQE1) from the triterpene saponin producing plant Nigella sativa. The gene product showed a high degree of homology to functional squalene epoxidases (SQEs) from Arabidopsis thaliana and was able to complement SQE deficient yeast that harboured a knockout mutation in the underlying erg1 gene. Moreover, the expression of the NSSQE1 gene in ERG1 wild type yeast revealed that NSSQE1 conferred resistance towards terbinafine, an inhibitor of fungal SQEs. The latter suggested that a terbinafine-dependent NSSQE1 selection marker system can be developed for yeast. The gene NSSQE1 was ubiquitously expressed in all plant tissues analysed, including roots where no triterpene saponins are produced. Therefore, we argue that NSSQE1 is a housekeeping gene for triterpene metabolism in Nigella sativa. Similar to triterpene saponins, NSSQE1 was up-regulated by methyl jasmonate in leaves and should also be functionally involved in saponin biosynthesis in Nigella sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghedira K., La nigelle cultivée: Nigella sativa L. (Ranunculaceae), Phytotherapie, 2006, 4, 220–226, (in French)

    Article  Google Scholar 

  2. Ramadan M.F., Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview, Int. J. Food Sci. Technol., 2007, 42, 1208–1218

    Article  CAS  Google Scholar 

  3. Kumara S.S.M., Huat B.T.K., Extraction, isolation and characterization of anti-tumor principle, α-Hederin, from the seeds of Nigella sativa, Planta Med., 2001, 67, 29–32

    Article  PubMed  CAS  Google Scholar 

  4. Tian Z., Liu Y.-M., Chen S.-B., Yang J.-S., Xiao P.-G., Wang L., et al., Cytotoxicity of two triterpenoids from Nigella glandulifera, Molecules, 2006, 11, 693–699

    Article  PubMed  CAS  Google Scholar 

  5. Scholz M., Lipinski M., Luftmann H., Leupold M., Ofir R., Fischer, R. et al., Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa, Phytochemistry, 2009, accepted for publication

  6. Hostettmann K., Marston A., Saponins, Chemistry and Pharmacology of Natural Products, Cambridge University Press, Cambridge, 1995

    Google Scholar 

  7. Lichtenthaler H.K., The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 1999, 50, 322–328

    Article  Google Scholar 

  8. Phillips D.R., Rasbery J.M., Bartel B., Matsuda S.P.T., Biosynthetic diversity in plant triterpene cyclization, Curr. Opin. Plant Biol., 2006, 9, 305–314

    Article  PubMed  CAS  Google Scholar 

  9. Xu R., Fazio G.C., Matsuda S.P.T., On the origin of triterpenoid skeletal diversity, Phytochemistry, 2004, 65, 261–291

    Article  PubMed  CAS  Google Scholar 

  10. Busquets A., Keim V., Closa M., del Arco A., Boronat A., Arró M., et al., Arabidopsis thaliana contains a single gene encoding squalene synthase, Plant. Mol. Biol., 2008, 67, 25–36

    Article  PubMed  CAS  Google Scholar 

  11. Rasbery J.M., Shan H., LeClair R.J., Norman M., Matsuda S.P.T., Bartel B., Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development, J. Biol. Chem., 2007, 282, 17002–17013

    Article  PubMed  CAS  Google Scholar 

  12. Colicelli J., Birchmeier C., Michaeli T., O’Neill K., Riggs M., Wigler M., Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase, Proc. Natl. Acad. Sci. USA., 1989, 86, 3599–3603

    Article  PubMed  CAS  Google Scholar 

  13. Gietz R.D., Woods R.A., Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Meth. Enzymol., 2002, 350, 87–96

    Article  PubMed  CAS  Google Scholar 

  14. Landl K.M., Klösch B., Turnowsky F., ERG1, encoding squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae, Yeast, 1996, 12, 609–613

    Article  PubMed  CAS  Google Scholar 

  15. Ruckenstuhl C., Eidenberger A., Lang S., Turnowsky F., Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity, Biochem. Soc. Trans., 2005, 33, 1197–1201

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki H., Achnine L., Xu R., Matsuda S.P.T., Dixon R.A., A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula, Plant J., 2002, 32, 1033–1048

    Article  PubMed  CAS  Google Scholar 

  17. Ruckenstuhl C., Lang S., Poschenel A., Eidenberger A., Baral P.K., Kohút P., et al., Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants, Antimicrob. Agents Chemother., 2007, 51, 275–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai J. Müller.

About this article

Cite this article

Lipinski, M., Scholz, M., Pieper, K. et al. A squalene epoxidase from Nigella sativa participates in saponin biosynthesis and mediates terbinafine resistance in yeast. cent.eur.j.biol. 4, 163–169 (2009). https://doi.org/10.2478/s11535-009-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0002-8

Keywords

Navigation