Skip to main content
Log in

A comparison of arsenic mobility in Phaseolus vulgaris, Mentha aquatica, and Pteris cretica rhizosphere

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The ability of Phaseolus vulgaris, Mentha aquatica, and Pteris cretica to release arsenic (As) species from contaminated soil was tested in rhizobox experiments in three soils differing in their physicochemical parameters and total and mobile As concentration. Relatively low uptake of arsenic by P. vulgaris and M. aquatica resulted in very low and ambiguous changes in rhizosphere soil compared to bulk soil. However, there were observed differences in the distribution of the mobile As portion in soil to individual As species as affected by plant species and/or plantation conditions of these plants. Higher percentage of mobile arsenite in mint rhizosphere seems to be related to more reducing conditions during cultivation of these wetland plants. P. cretica planted in the soils containing between 36 and 1436 mg As kg−1 was able to accumulate between 80 and 500 mg As kg−1 in aboveground biomass. The extractable concentrations of As compounds in rhizosphere soil of P. cretica showed a clear depletion of arsenate (representing more than 90% of extractable arsenic) with the distance from plant roots. However, the As uptake mechanisms, as well as As transformation within hyperaccumulating fern plants, differ substantially from those in higher plants. Therefore the finding of suitable higher plant tolerant to the As soil contamination with good ability to accumulate As in aboveground biomass remains for the further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dakora F.D., Phillips D.A., Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil, 2002, 245, 35–47

    Article  CAS  Google Scholar 

  2. Schoettelndreier M., Falkengren-Grerup U., Plant induced alteration in the rhizosphere and the utilization of soil heterogeneity, Plant Soil, 1999, 209, 297–309

    Article  Google Scholar 

  3. Jones D.L., Organic acids in the rhizosphere — a critical review, Plant Soil, 1998, 205, 25–44

    Article  CAS  Google Scholar 

  4. Fitz W.J., Wenzel W.W., Zhang H., Nurmi J., Štípek K., Fischerová Z., et al., Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency, Environ. Sci. Technol., 2003, 37, 5008–5014

    Article  PubMed  CAS  Google Scholar 

  5. Dembitsky V.M., Řezanka T., Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms, Plant Sci., 2003, 165, 1177–1192

    Article  CAS  Google Scholar 

  6. Meharg A.A., Hartley-Whitaker J., Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species, New Phytologist, 2002, 154, 29–43

    Article  CAS  Google Scholar 

  7. Carbonell-Barrachina A.A., Burlo-Carbonell F., Burgos-Hernandez A., Lopez E., Mataix-Beneito J., The influence of arsenite concentration on arsenic accumulation in tomato and bean plants, Sci. Hortic., 1997, 71, 167–176

    Article  CAS  Google Scholar 

  8. Tlustoš P., Balík J., Száková J., Pavlíková D., The accumulation of arsenic in radish biomass when different forms of As were applied in the soil, Rostl. Výr., 1998, 44, 7–13

    Google Scholar 

  9. Tlustoš P., Goessler W., Száková J., Balík J., Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid, Appl. Organometal. Chem., 2002, 16, 216–220

    Article  CAS  Google Scholar 

  10. Baroni F., Boscagli A., DiLella L.A., Protano G., Riccobono F., Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy), J. Geochem. Expl., 2004, 81, 1–14

    Article  CAS  Google Scholar 

  11. Zurayk R., Sukkariyah B., Baalbaki R., Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution, Water Air Soil Pollut., 2001, 127, 373–388

    Article  CAS  Google Scholar 

  12. Ma L.Q., Komar K.M., Tu C., Zhang W.H., Cai Y., Kennelley E.D., A fern that hyperaccumulates arsenic - A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils, Nature, 2001, 409, 579

  13. Visoottiviseth P., Francesconi K., Sridokchan W., The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land, Environ. Pollut., 2002, 118, 453–461

    Article  PubMed  CAS  Google Scholar 

  14. Zhao F.J., Dunham S.J., McGrath S.P., Arsenic hyperaccumulation by different fern species, New Phytologist, 2002, 156, 27–31

    Article  CAS  Google Scholar 

  15. Fitz W.J., Wenzel W.W., Wieshammer G., Istenič B., Microtome sectioning causes artifacts in rhizobox experiments, Plant Soil, 2003, 256, 455–462

    Article  CAS  Google Scholar 

  16. Miholová D., Mader P., Száková J., Slámová A., Svatoš Z., Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory, Fresenius J. Anal. Chem., 1993, 345, 256–260

    Article  Google Scholar 

  17. Száková J., Tlustoš P., Balík J., Pavlíková D., Vaněk V., The sequential analytical procedure as a tool for evaluation of As, Cd and Zn mobility in soil, Fresenius J. Anal. Chem., 1999, 363, 594–595

    Article  Google Scholar 

  18. Sims J.R., Haby V.A., Simplified colorimetric determination of soil organic matter, Soil Science, 1971, 112, 137–141

    Article  CAS  Google Scholar 

  19. Mehlich A., Mehlich 3 soil test extraction: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plant Anal., 1984, 15, 1409–1416

    Article  CAS  Google Scholar 

  20. Száková J., Tlustoš P., Goessler W., Pavlíková D., Balík J., Comparison of mild extraction procedures for determination of arsenic compounds in different parts of pepper plants (Capsicum annum, L.), Appl. Organomet. Chem., 2005, 19, 308–314

    Article  CAS  Google Scholar 

  21. Wenzel W.W., Kirchbaumer N., Prohaska T., Stingeder G., Lombi E., Adriano D.C., Arsenic fractionation in soils using an improved sequential extraction procedure, Anal. Chim. Acta, 2001, 436, 1–15

    Article  Google Scholar 

  22. Schmeisser E., Goessler W., Kienzl N., Francesconi K.A., Volatile analytes formed from arsenosugars: Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses, Anal. Chem., 2004, 76, 418–423

    Article  PubMed  CAS  Google Scholar 

  23. Cobb G.P., Sands K., Waters M., Wixson B.G., Dorward-King E., Accumulation of heavy metals by vegetables grown in mine wastes, Environ. Toxicol. Chem., 2000, 19, 600–607

    Article  CAS  Google Scholar 

  24. Stoeva N., Bérová M., Zlatev Z., Effect of arsenic on some physiological parameters in bean plants, Biol. Plant., 2005, 49, 293–296

    Article  CAS  Google Scholar 

  25. Lin A., Zhang X., Zhu Y.G., Zhao F.J., Arsenate-induced toxicity: Effects on antioxidative enzymes and DNA damage in Vicia faba, Environ. Toxicol. Chem., 2008, 27, 413–419

    Article  PubMed  CAS  Google Scholar 

  26. Stolz E., Greger M., Effects of different wetland plant species on fresh unwathered sulphidic mine tailings, Plant Soil, 2005, 276, 251–261

    Article  CAS  Google Scholar 

  27. Robinson B., Kim N., Marchetti M., Moni C., Schroeter L., van den Dijssel C., et al., Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand, Environ. Exper. Bot., 2006, 58, 206–215

    Article  CAS  Google Scholar 

  28. Otte M.L., Kearns C.C., Doyle M.O., Accumulation of arsenic and zinc in the rhizosphere of wetland plants, Bull. Environ. Contam. Toxicol., 1995, 55, 154–161

    Article  PubMed  CAS  Google Scholar 

  29. Kuehnelt D., Lintschinger J., Goessler W., Arsenic compounds in terrestrial organisms. IV. Green plants and lichens from an old arsenic smelter site in Austria, Appl. Organometall. Chem., 2000, 14, 411–420

    Article  CAS  Google Scholar 

  30. Geiszinger A., Goessler W., Kosmus W., Organoarsenic compounds in plants and soil on top of an ore vein, Appl. Organomet. Chem., 2002, 16, 245–249

    Article  CAS  Google Scholar 

  31. Koch I., Wang L.X., Ollson C.A., Cullen W.R., Reimer K.J., The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada, Environ. Sci. Technol., 2000, 34, 22–26

    Article  CAS  Google Scholar 

  32. Raab A., Feldmann J., Meharg A.A., The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica, Plant Physiol., 2004, 134, 1113–1122

    Article  PubMed  CAS  Google Scholar 

  33. Raab A., Schat H., Meharg A.A., Feldmann J., Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations, New Phytologist, 2005, 168, 551–558

    Article  PubMed  CAS  Google Scholar 

  34. Smith P.G., Koch I., Reimer K.J., Uptake, transport and transformation of arsenate in radishes, Sci. Total Environ., 2008, 390, 188–197

    Article  PubMed  CAS  Google Scholar 

  35. Koller C.E., Patrick J.W., Rose R.J., Offler C.E., MacFarlane G.R., Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R.Br., Bull. Environ. Contam. Toxicol., 2008, 80, 128–133

    Article  PubMed  CAS  Google Scholar 

  36. Tu C., Ma L.Q., Zhang W., Cai Y., Harris W.G., Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.), Environ. Pollut., 2003, 124, 223–230

    Article  PubMed  CAS  Google Scholar 

  37. Zhang W.H., Cai Y., Downum K.R., Ma L.Q., Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern), Environ. Pollut., 2004, 131, 337–345

    Article  PubMed  CAS  Google Scholar 

  38. Lombi E., Zhao F.J., Fuhrmann M., Ma L.Q., McGrath S.P., Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata, New Phytologist, 2002, 156, 195–203

    Article  CAS  Google Scholar 

  39. Webb S.M., Gaillard J.F., Ma L.Q., Tu C., XAS speciation of arsenic in a hyperaccumulating fern, Environ. Sci. Technol., 2003, 37, 754–760

    Article  PubMed  CAS  Google Scholar 

  40. Meng X.G., Jing C.Y., Korfiatis G.P., A review of redox transformation of arsenic in aquatic environments, Biogeochem. Environ. Imp. Trace Elem. ACS Symp. Series, 2003, 835, 70–83

    CAS  Google Scholar 

  41. Baker M.D., Inniss W.E., Mayfield C.I., Wong P.T.S., Chau Y.K., Effect of pH on the methylation of mercury and arsenic by sediment microorganisms, Environ. Technol. Lett., 1983, 4, 89–100

    Article  CAS  Google Scholar 

  42. Frankenberger Jr W.T., Losi M.E., Applications of bioremediation in the cleanup of heavy metals and metalloids, In: Skipper H.D., Turco R.F. (Eds.), Bioremediation: Science and applications, Soil Science Society of America et al., Madison, 1995, 173–210

  43. Macur R.E., Jackson C.R., Botero L.M., McDermott T.R., Inskeep W.P., Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil, Environ. Sci. Technol., 2004, 38, 104–111

    Article  PubMed  CAS  Google Scholar 

  44. Lorenz N., Hintemann T., Kramarewa T., Katayama A., Yasuta T., Marschner P., et al., Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure, Soil Biol. Biochem., 2006, 38, 1430–1437

    Article  CAS  Google Scholar 

  45. Ultra V.U., Tanaka S., Sakurai K., Iwasaki K., Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere, Plant Soil, 2007, 290, 29–41

    Article  CAS  Google Scholar 

  46. Masscheleyn P.H., Delaune R.D., Patrick Jr. W.H., Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil, Environ. Sci. Technol., 1991, 25, 1414–1419

    Article  CAS  Google Scholar 

  47. McGeehan S.L., Naylor D.V., Sorption and redox transformation of arsenite and arsenate in two flooded soils, Soil Sci. Soc. Am. J., 1994, 58, 337–342

    CAS  Google Scholar 

  48. Marin A.R., Masscheleyn P.H., Patrick Jr. W.H., Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice, Plant Soil, 1993, 152, 245–253

    Article  CAS  Google Scholar 

  49. Bowell R.J., Sulphide oxidation and arsenic speciation in tropical soils, Environ. Geochem. Health, 1994, 16, 84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiřina Száková.

About this article

Cite this article

Száková, J., Tlustoš, P., Goessler, W. et al. A comparison of arsenic mobility in Phaseolus vulgaris, Mentha aquatica, and Pteris cretica rhizosphere. cent.eur.j.biol. 4, 107–116 (2009). https://doi.org/10.2478/s11535-008-0048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-008-0048-z

Keywords

Navigation