Central European Journal of Biology

, Volume 3, Issue 1, pp 91–103 | Cite as

Macroecological patterns and niche structure in a new marine food web

  • Gabriel Yvon-Durocher
  • Jose M. Montoya
  • Mark C. Emmerson
  • Guy Woodward
Research Article


The integration of detailed information on feeding interactions with measures of abundance and body mass of individuals provides a powerful platform for understanding ecosystem organisation. Metabolism and, by proxy, body mass constrain the flux, turnover and storage of energy and biomass in food webs. Here, we present the first food web data for Lough Hyne, a species rich Irish Sea Lough. Through the application of individual-and size-based analysis of the abundance-body mass relationship, we tested predictions derived from the metabolic theory of ecology. We found that individual body mass constrained the flux of biomass and determined its distribution within the food web. Body mass was also an important determinant of diet width and niche overlap, and predator diets were nested hierarchically, such that diet width increased with body mass. We applied a novel measure of predator-prey biomass flux which revealed that most interactions in Lough Hyne were weak, whereas only a few were strong. Further, the patterning of interaction strength between prey sharing a common predator revealed that strong interactions were nearly always coupled with weak interactions. Our findings illustrate that important insights into the organisation, structure and stability of ecosystems can be achieved through the theoretical exploration of detailed empirical data.


Biomass spectra Body size Ecological networks Food webs Interaction strength Marine ecosystems Metabolic theory Numerical abundance Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Paine R.T., Road maps of interactions or the girst for theoretical development?, Ecology, 1988, 69, 1648–1654CrossRefGoogle Scholar
  2. [2]
    Cohen J.E., Jonsson T., Carpenter S.R., Ecological community description using the food web, species abundance and body size, Proc. Natl. Acad. Sci. USA., 2003, 100, 1781–1786PubMedCrossRefGoogle Scholar
  3. [3]
    Cohen J.E., Food Webs and Niche Space, Princeton University Press, 1978Google Scholar
  4. [4]
    Pimm S.L., Lawton J.H., Cohen J.E., Food web patterns and their consequences, Nature, 1991, 350, 669–674CrossRefGoogle Scholar
  5. [5]
    Pimm S.L., Food Webs, Chapman and Hall, New York, 2003Google Scholar
  6. [6]
    Montoya J.M., Pimm S.L., Sole R.V., Ecological networks and their fragility, Nature, 2006, 442, 259–262PubMedCrossRefGoogle Scholar
  7. [7]
    May R.M., Stability and Complexity in Model Ecosystems, Princeton University Press, 1973Google Scholar
  8. [8]
    McCann K.S., The diversity-stability debate, Nature, 2000, 405, 228–233PubMedCrossRefGoogle Scholar
  9. [9]
    Sole R.V., Montoya J.M., Complexity and fragility in ecological networks, Proc. R. Soc. Lond. B., 2001, 268, 2039–2045CrossRefGoogle Scholar
  10. [10]
    Pimm S.L., Properties of food webs, Ecology, 1980, 219–225Google Scholar
  11. [11]
    McCann K.S., Hastings A., Huxel G.R., Weak trophic interactions and the balance of nature, Nature, 1998, 395, 794–798CrossRefGoogle Scholar
  12. [12]
    Neutel A-M., Heesterbeek J.A.P., de Ruiter P.C., Stability in real food webs: weak links in long loops, Science, 2002, 296, 1120–1223PubMedCrossRefGoogle Scholar
  13. [13]
    Emmerson M.C., Yearsley J.M., Weak interactions, omnivory and emergent food-web properties, Proc. R. Soc. Lond. B., 2004, 397–405Google Scholar
  14. [14]
    Neutel A-M., Heesterbeek J.A.P., de Koppel J. V., Hoenderboom G., Vos A., Kaldeway C., et al., Reconciling complexity with stability in naturally assembling food webs, Nature, 2007, 449, 559–603CrossRefGoogle Scholar
  15. [15]
    Elton C.S., Animal Ecology, Sedgewick and Jackson, London, 1927Google Scholar
  16. [16]
    Darwin C.H., On the Origin of Species, John Murrey, London, 1859Google Scholar
  17. [17]
    Montoya, J.M., Sole R.V., Small world patterns in food webs, J. Theor. Biol., 2002, 214, 405–412PubMedCrossRefGoogle Scholar
  18. [18]
    Williams R.J., Berlow E.L., Dunne J.A., Barabasi A-L., Martinez N.D., Two degrees of separation in complex food webs, Proc. Natl. Acad. Sci. USA., 2002, 99, 12913–12916PubMedCrossRefGoogle Scholar
  19. [19]
    Reuman D.C., Carpenter S.R., Cohen J.E., Estimating relative energy fluxes using the food web species abundance and body size, Adv. Ecol. Res., 2005, 36, 137–180CrossRefGoogle Scholar
  20. [20]
    Woodward G., Speirs D.C., Hildrew, A.G., Quantification and temporal resolution of a complex size-structured food web, Adv. Ecol. Res., 2005, 36, 85–135CrossRefGoogle Scholar
  21. [21]
    Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B., Toward a metabolic theory of ecology, Ecology, 2004, 85, 1771–1789CrossRefGoogle Scholar
  22. [22]
    Lindeman R.L., The trophic dynamic aspect of ecology, Ecology, 1942, 23, 399–417CrossRefGoogle Scholar
  23. [23]
    Hutchinson G.E., Homage to santa rosalia, or why are there so many kinds of animals?, Am. Nat., 1959, 95, 137–145CrossRefGoogle Scholar
  24. [24]
    Cyr H., Individual Energy Use and the Allometry of Population Density, In: Scaling in Biology, West G.B., Browm J.H. (Eds.), Oxford University Press, 2000Google Scholar
  25. [25]
    Jennings S., Mackinson S., Abundance body mass relationships in size structured food webs, Ecol. Lett., 2003, 6, 971–974CrossRefGoogle Scholar
  26. [26]
    Brown J.H., Gillooly J.F., Ecological food webs: High Quality data facilitate theoretical unification, Proc. Natl. Acad. Sci. USA., 2003, 100, 1467–1468PubMedCrossRefGoogle Scholar
  27. [27]
    Enquist B.J., Niklas K.J., Invariant scaling relations across tree dominated communites, Nature, 2001, 410, 655–660PubMedCrossRefGoogle Scholar
  28. [28]
    Hardy A., The herring in relation to its animate environment, part 1, Fisheries Investigations, 1924, Series 27 (3)Google Scholar
  29. [29]
    Woodward G., Hildrew A.G., Body-size determinants of niche overlap and intraguild predation within a complex food web, J. Anim. Ecol., 2002, 71, 1063–1074CrossRefGoogle Scholar
  30. [30]
    Cushing D.H., Marine Ecology and Fisheries, Cambridge University Press, 1975Google Scholar
  31. [31]
    Blanco J.M., Echevarria F., Garcia C.M., Dealing with size spectra: some conceptual and mathematical problems, Sci. Mar., 1994, 58, 17–29Google Scholar
  32. [32]
    Quinones R.A., A comment on the use of allometry in the study of pelagic ecosystem processes, Sci. Mar., 1994, 58, 11–16Google Scholar
  33. [33]
    Brose U., Jonsson T., Berlow E.L., Warren P., Banasek-Richter C., Bersier L-F., et al., Consumer-resource body size relationships in natural food webs. Ecology, 2006, 87, 2411–2417PubMedCrossRefGoogle Scholar
  34. [34]
    Woodward G., Warren P.H., Body size and Predatory interactions in freshwaters: scaling from individuals to ecosystems, In: Body size: The Structure and Function of Aquatic Ecosystems, Hildrew A. G., Raffaelli D. (Eds.), Cambridge University Press, 2007, 98–117Google Scholar
  35. [35]
    Pianka E.R., The structure of lizard communities, Ann. Rev. Ecol. Syst., 1973, 4, 53–74CrossRefGoogle Scholar
  36. [36]
    Begon M., Harper J.L., Townsend, C.R., Ecology: Individuals, Populations and Communities, Blackwell publishing, 1990Google Scholar
  37. [37]
    Meehan T.D., Energy use and animal abundance in litter and soil communities, Ecology, 87, 2006, 1650–1658PubMedCrossRefGoogle Scholar
  38. [38]
    Warwick R.M., Body size and diversity in marine systems, In: Body size: The Structure and Function of Aquatic Ecosystems, Hildrew A.G., Raffaelli D. (Eds.), Cambridge University Press, 2007, 210–224Google Scholar
  39. [39]
    White E.P., Morgan Ernest S.K., Kerkhoff A.J., Enquist B.J., Relationships between body size and abundance in ecology, Trends Ecol. Evol., 2007, 22, 323–330PubMedCrossRefGoogle Scholar
  40. [40]
    Bascompte J., Jordano P., Melian C.J., Olesen J., The nested structure of ecological networks, Proc. Natl. Acad. Sci. USA., 2004, 100, 9383–9387CrossRefGoogle Scholar
  41. [41]
    Memmot J., Martinez N.D., Cohen J.E., Predators, parasitoids and pathogens: species richness, trophic generality and body size in a natural food web, J. Anim. Ecol., 2000, 69, 1–15CrossRefGoogle Scholar
  42. [42]
    Paine R.T., Food web analysis through field measurements of per capita interaction strength, Nature, 1992, 355, 73–75CrossRefGoogle Scholar
  43. [43]
    Wootton J.T. Estimates and a test of per capita interactions strength: diet, abundance and impact of intertidally foraging birds, Ecol. Monogr., 1997, 67, 45–64CrossRefGoogle Scholar
  44. [44]
    de Ruiter P.C., Neutel A-M., Moore J.C., Energetics, patterns of interaction strengths and stability in real ecosystems, Science, 269, 1257–1260Google Scholar
  45. [45]
    Emmerson M.C., Raffaelli D., Predator-prey body size, interaction strength and the stability of a real food web, J. Anim. Ecol., 2004, 73, 399–409CrossRefGoogle Scholar
  46. [46]
    Woodward G., Ebenman B., Emmerson M., Montoya J.M., Olesen J.M., Valido A., et al., Body-size in ecological networks, Trends Ecol. Evol., 2005, 20, 402–409PubMedCrossRefGoogle Scholar
  47. [47]
    Berlow E.L., Neutel A-M., Cohen J.E., deRuiter P.C., Ebenman B., Emmerson, M.C., Interaction strengths in food webs: issues and opportunities, J. Anim. Ecol., 2004, 73, 585–594CrossRefGoogle Scholar
  48. [48]
    Wootton J.T., Emmerson M.C., Measurement of interaction strength in nature, Ann. Rev. Ecol. Syst., 2005, 36, 419–444CrossRefGoogle Scholar
  49. [49]
    Rooney N., McCann K.S., Gellner G., Moore J.C., Structural asymmetry and the stability of diverse food webs, Nature, 2006, 442, 265–269PubMedCrossRefGoogle Scholar
  50. [50]
    Holt R.D., Predation, apparent competition, and the structure of prey communities, Theor. Pop. Biol., 1997, 12, 197–229CrossRefGoogle Scholar
  51. [51]
    Bonsall M.B., Hassell M.P., Apparent competition structure prey assemblages, Nature, 1997, 388, 371–373CrossRefGoogle Scholar
  52. [52]
    Emmerson M.C., Montoya J.M., Woodward G., Body size interaction strength, and food webs dynamics, In: Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change, de Ruiter P., Wolters V., Moore J.C. (Eds.), San Diego: Academic press, 2005, 553–590Google Scholar
  53. [53]
    Kitching J.A., Ecological studies at Lough Hyne, Adv. Ecol. Res., 1987, 17, 115–181CrossRefGoogle Scholar
  54. [54]
    Platt T., Denman K., Organisation in the pelagic ocean. Helgolander wiss. Meereunters, 1977, 30, 575–581Google Scholar
  55. [55]
    Marquet P.A., Quinones R.A., Abades S., Labra F., Tognelli M., Arim M., et al., Scaling and power laws in ecological systems, J. Exp. Biol., 2005, 208, 1749–1769PubMedCrossRefGoogle Scholar
  56. [56]
    Wilkins H.K.A., Myers A.A., The distribution of Gobies (Teleostei: Gobiidae), In: The Ecology of Lough Hyne, Myers A.A., Little C., Costello M.J., Partridge M.C. (Eds.), Royal Academy Dublin, 1991, 107–113Google Scholar
  57. [57]
    Hayward P.J., Ryland J.S., Handbook of the Marine fauna of North-West Europe, Oxford University Press, 1995Google Scholar
  58. [58]
    Hamerlynck O., Cattrijsse A., The food of Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and comparison with the food of its potential predator P. lozanoi, J. Fish Biol., 1994, 44, 753–771CrossRefGoogle Scholar
  59. [59]
    Winemiller K.O., Spatial and temporal variation in tropical fish trophic networks, Ecol. Monogr., 1990, 60, 331–367CrossRefGoogle Scholar
  60. [60]
    Tavares-Cromar A.F., Williams D.D., The importance of temporal resolution in food web analysis? evidence from a detritus-based stream, Ecol. Monogr., 1996, 66, 91–113CrossRefGoogle Scholar
  61. [61]
    Thompson R.M., Townsend C.R., The effect of seasonal variation on the community structure and food web attributes of two streams: implications for food web science, Oikos, 1999, 87, 75–88CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gabriel Yvon-Durocher
    • 1
  • Jose M. Montoya
    • 1
    • 2
  • Mark C. Emmerson
    • 3
    • 4
  • Guy Woodward
    • 1
  1. 1.School of Biological & Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Environmental Research InstituteUniversity College CorkCorkIreland
  4. 4.Department of Zoology, Ecology and Plant SciencesUniversity College CorkCorkIreland

Personalised recommendations