Skip to main content
Log in

Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Dichlorvos (DDVP) is an organophosphorous pesticide with a high degree of dangerous effect towards the environment. We have investigated the growth and susceptibility to DDVP of halophilic bacteria isolated from Romanian salt lakes. The growth of four strains was affected by DDVP, which may be correlated with the rate constant values of DDVP disappearance from the saline solutions. This is due not to a chemical degradation in solution but to the diffusion process and namely DDVP penetration into the cell cytoplasm by an “organic-osmolyte” mechanism. The permeability coefficient P was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merck Index, (1976), 9th Ed.

  2. W. Wild: “Mutagenicity studies on organophosphorus insecticides”, Mutat. Res., Vol. 32, (1975), pp. 133–150.

    PubMed  CAS  Google Scholar 

  3. E. Evghenidou, K. Fytianos and I. Poulios: “Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalyst”, Appl. Catal. B: Environ., Vol. 30, (2005), pp. 259–269.

    Google Scholar 

  4. T. Oncescu and P. Oancea: “On The Photolysis of Dichlorvos”, Rev. Roum. Chim., Vol. 50, (2005), pp. 999–1007.

    CAS  Google Scholar 

  5. J. Leveglia and P.A. Dahm: “Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms”, Annu. Rev. Entomol., Vol. 22, (1977), pp. 483–515.

    Article  Google Scholar 

  6. EPA-US: “Phase I Comments for dichlorvos”, (1999), pp. 1–62.

  7. H. Tse, M. Comba and M. Alaee: “Methods for the determination of organophosphate insecticides in water, sediments and biota”, Chemosphere, Vol. 54, (2004) pp. 41–47.

    Article  PubMed  CAS  Google Scholar 

  8. M.T. Lieberman and M. Alexander: “Microbial and nonenzymatic steps in the degradation of dichlorvos (2,2-dichlorovinyl,O,O-dimethyl phosphate)”, J. Agric. Food Chem., Vol. 31, (1983), pp. 265–267.

    Article  CAS  Google Scholar 

  9. W.J. Hayes: Pesticides Studied in Man, Williams and Wilkins, Baltimore, MD., 1982.

    Google Scholar 

  10. W.J. Hayes and E.R. Laws (Eds.): “Classes of Pesticides”, Handbook of Pesticide Toxicology, Academic Press, Inc., NY, 1990.

    Google Scholar 

  11. IPCS-INCHEM, http://www.inchem.org/documents/jmpr/jmpmono/v93pr05.htm

  12. J.J. DeFrank and T. Cheng: “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate”, J. Bacteriol., Vol. 173, (1991), pp. 1938–1943.

    PubMed  CAS  Google Scholar 

  13. F. Streichsbier and C. Hinteregger: “Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water”, Biotechnol. Lett., Vol. 19, (1997), pp. 1099–1102.

    Article  Google Scholar 

  14. B.M. Peyton, M.R. Mormile, V. Alva, C. Oie, F. Roberto, W.A. Apel and A. Oren: “Biotransformation of toxic organic and inorganic contaminants by halophilic bacteria”, Halophilic Microorganisms, A. Ventosa (Ed.), Springer-Verlag Berlin Heidelberg, 2004, pp. 315–331.

    Google Scholar 

  15. V.A. Hayes, N.G. Ternan and G. McMullan: “Organophosphonate metabolism by a moderately halophilic bacterial isolate”, FEMS Microbiol. Lett., Vol. 186, (2000), pp. 171–175.

    Article  PubMed  CAS  Google Scholar 

  16. A. Oren, P. Gurevich, M. Azachi and Y. Henis: “Microbial degradation of pollutants at high salt concentration”, Biodegradation, Vol. 3, (1992), pp. 387–389.

    Article  CAS  Google Scholar 

  17. H.J. Kunte, H.G. Trüper and H. Stan-Lotter: “Halophilic microorganisms”, Astrobiology: the quest for the conditions of life, G. Horneck, C. Baumstark-Khan (Eds.), Springer, New York-Berlin, 2002, pp. 185–200.

    Google Scholar 

  18. H.J. Kunte: “Osmoregulation in Bacteria: Compatible Solute Accumulation and Osmosensing”, Environ. Chem., Vol. 3, (2006), pp. 94–99.

    Article  CAS  Google Scholar 

  19. S. Cayley, B.A. Lewis, H.J. Guttman and M.T.Jr. Record: “Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo, J. Mol. Biol., Vol. 222, (1991), pp. 281–300.

    Article  PubMed  CAS  Google Scholar 

  20. A. Ventosa, J.J. Nieto and A. Oren: “Biology of moderately halophilic aerobic bacteria”, Microbiol. Mol. Biol. Rev., Vol. 62, (1998), pp. 504–544.

    PubMed  CAS  Google Scholar 

  21. A. Oren: “Bioenergetics aspects of halophilism”, Microbiol. Mol. Biol. Rev., Vol. 63, (1999), pp. 334–348.

    PubMed  CAS  Google Scholar 

  22. D.J. Kushner and M. Kamekura: “Physiology of halophilic Eubacteria”, Halophilic Bacteria, F. Rodriguez-Valera (Ed.), Vol. I, 1988, pp. 109–138.

  23. W.D. Grant, R.T. Gemmell and T.J. McGenity: “Halobacteria: the evidence for longevity”, Extremophiles, Vol. 2, (1998), pp. 279–287.

    Article  PubMed  CAS  Google Scholar 

  24. A. Carere, V.A. Ortali, G. Cardamone and G. Morpurgo: “Mutagenicity of dichlorvos and other structurally related pesticides in Salmonella and Streptomyces”, Chem. Biol. Interact., Vol. 22, (1978), pp. 297–308.

    Article  PubMed  CAS  Google Scholar 

  25. M. Iranzo, J. Sain-Pardo, R. Boluda, J. Sanchez and S. Mormeneo: “The use of microorganisms in environmental remediation”, Ann. Microbiol., Vol. 51, (2001), pp. 135–143.

    Google Scholar 

  26. K.B. Singh and A. Walker: “Microbial degradation of organophosphorus compounds”, FEMS Microbiol. Rev., Vol. 30, (2006), pp. 428–471.

    Article  PubMed  CAS  Google Scholar 

  27. M. Enache, T. Itoh, M. Kamekura, G. Teodosiu and L. Dumitru: “Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake”, Int. J. Syst. Evol. Microbiol., Vol. 57, (2007), pp. 393–397.

    Article  PubMed  CAS  Google Scholar 

  28. A. Asthana, A. Pillai and V.K. Gupta: “A simple sensitive spectophotometric method for determination of dichlorvos in environmental samples”, Indian J. Environ. Prot., Vol. 21, (2001), pp. 856–858.

    CAS  Google Scholar 

  29. V. Feigenbrugel, C. Loew, S. Le Calvé and P. Mirabel: “Near-UV molar absorptivities of acetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution”, J. Photochem. Photobiol. A: Chemistry, Vol. 174, (2005), pp. 76–81.

    Article  CAS  Google Scholar 

  30. M.C. Lu, G.D. Roam, J.N. Chen and C. P. Huang: “Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass”, J. Photochem. Photobiol. A: Chemistry, Vol. 76, (1993), pp. 103–110.

    Article  CAS  Google Scholar 

  31. J. Anton, A. Oren, S. Benlloch, F. Rodriguez-Valera and R. Rossello-Mora: “Salinibacter ruber gen. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds”, Int. J. Syst. Evol. Microbiol., Vol. 52, (2002), pp. 485–491.

    PubMed  CAS  Google Scholar 

  32. B. Kim, K. La Flamme and N.A. Peppas: “Dynamic Swelling Behavior of pHSensitive Anionic Hydrogels Used for Protein Delivery”, J. Appl. Polymer Sci., Vol. 89, (2003), pp. 1606–1613.

    Article  CAS  Google Scholar 

  33. N.A. Peppas, R. Gurny, E. Doelker and P. Buri: “Modelling of drug diffusion through swellable polymeric systems”, J. Membr. Sci., Vol. 7, (1980), pp. 241–253.

    Article  CAS  Google Scholar 

  34. N.A. Peppas: “Release of bioactive agents from swellable polymers: Theory and Experiments”, Recent Advances in Drug Delivery Systems, Anderson, J.M. and Kim, S.W. (Ed.), Plenum Press, N.Y., 1984. pp. 279–290.

    Google Scholar 

  35. N.A. Peppas and R. Langer: “New challenges in biomaterials”, Science, Vol. 263, (1994), pp. 1715–1720.

    Article  PubMed  CAS  Google Scholar 

  36. L. Ochoa, M. Igartua, R.M. Hernandez, A.R. Gascon and J.L. Pedraz: “Preparation of sustained release hydrophilic matrices by melt granulation in a high-shear mixer”, J. Pharm. Sci., Vol. 8, (2005), pp. 132–140.

    CAS  Google Scholar 

  37. S.H. Gehrke, J.P. Fisher, M. Palasis and M.E. Lund: “Factors determining hydrogel permeability”, Annal. N. Y. Acad. Sci., Vol. 831, (1997), pp. 179–207.

    Article  CAS  Google Scholar 

  38. G.L. Flynn, S.H. Yalkowsky and T.J. Roseman: “Mass transport phenomena and models: theoretical concepts”, J. Pharm. Sci., Vol. 63, (1974), pp. 479–510.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalin Enache.

About this article

Cite this article

Oncescu, T., Oancea, P., Enache, M. et al. Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments. cent.eur.j.biol. 2, 563–573 (2007). https://doi.org/10.2478/s11535-007-0037-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-007-0037-7

Keywords

Navigation