Skip to main content
Log in

Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The ability to identify diseases in an early infection stage and to accurately quantify the severity of infection is crucial in plant disease assessment and management. A greenhouse study was conducted to assess changes in leaf spectral reflectance of wheat plants during infection by powdery mildew and take-all disease to evaluate leaf reflectance measurements as a tool to identify and quantify disease severity and to discriminate between different diseases. Wheat plants were inoculated under controlled conditions in different intensities either with powdery mildew or take-all. Leaf reflectance was measured with a digital imager (Leica S1 Pro, Leica, Germany) under controlled light conditions in various wavelength ranges covering the visible and the near-infrared spectra (380–1300 nm). Leaf scans were evaluated by means of L*a*b*-color system. Visual estimates of disease severity were made for each of the epidemics daily from the onset of visible symptoms to maximum disease severity. Reflectance within the ranges of 490780 nm (r2 = 0.69), 510780nm (r2 = 0.74), 5161300nm (r2 = 0.62) and 5401300 nm (r2 = 0.60) exhibited the strongest relationship with infection levels of both powdery mildew and take-all disease. Among the evaluated spectra the range of 490780nm showed most sensitive response to damage caused by powdery mildew and take-all infestation. The results of this study indicated that disease detection and discrimination by means of reflectance measurements may be realized by the use of specific wavelength ranges. Further studies have to be carried out, to discriminate powdery mildew and take-all infection from other plant stress factors in order to develop suitable decision support systems for site-specific fungicide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.N. Perry: “Sampling and applied statistics for pests and diseases. Sampling to make decisions”, Aspects Appl. Biol., Vol. 37, (1994), pp. 1–14.

    Google Scholar 

  2. G. Hughes: “Incorporating spatial pattern of harmful organisms into crop loss models”, Crop Protect., Vol. 15, (1996), pp. 407–421.

    Article  Google Scholar 

  3. H.A. McCartney and B.D.L. Fitt: “Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns”, in D. Gareth Jones (Ed.): Plant disease epidemiology, Kluwer Publishers, London, 1998, pp. 138–160.

    Google Scholar 

  4. Y. Sasaki, T. Okamoto, K. Imou and T. Torii: “Automatic diagnosis of plant disease — Spectral reflectance of healthy and diseased leaves”, In: Proc. AgEng98 International Conference on Agricultural Engineering, Oslo (Norway), 1998, CD.

  5. B. Lorenzen and A. Jensen: “Changes in spectral properties induced in barley by cereal powdery mildew”, Rem. Sens. Environ., Vol. 27, (1989), pp. 201–209.

    Article  Google Scholar 

  6. B.J.M. Secher: “Site specific control of diseases in winter wheat”, Aspects Appl. Biol., Vol. 48, (1997), pp. 58–64.

    Google Scholar 

  7. F.W. Nutter (Jr.), M.L. Gleason, J.H. Jenco and N.C. Christians: “Assessing the accuracy, inter-rater repeatability and inter-rater reliability of disease assessment systems”, Phytopathology, Vol. 83, (1993), pp. 806–812.

    Google Scholar 

  8. L.D. Lathrop and S. Pennypacker: “Spectral classification of tomato disease severity levels”, Photogramm. Eng. Rem. Sens., Vol. 46, (1980), pp. 1433–1438.

    Google Scholar 

  9. F.W. Nutter (Jr.): “Detection and measurement of plant disease gradients in peanut with a multispectral radiometer”, Phytopathology, Vol. 79, (1989), pp. 958–963.

    Google Scholar 

  10. H. E. Nilsson: “Hand-held radiometry and IR thermography of plant diseases in field plot experiments”, Int. J. Rem. Sens., Vol. 12, (1991), pp. 545–557.

    Google Scholar 

  11. L. Chaerle, W.M. Van Caeneghem, H. Lambers, M. Van Montagu and D. Van Der Straeten: “Presymptomatic visualization of plant-virus interactions by thermography”, Nat. Biotechnol., Vol. 17, (1999), pp. 813–816.

    Article  PubMed  CAS  Google Scholar 

  12. L. Chaerle and D. Van der Straeten: “Seeing is believing: imaging techniques to monitor plant health”, Biochim. Biophys. Acta, Vol. 1519, (2001), pp. 153–166.

    PubMed  CAS  Google Scholar 

  13. J.R. Riley: “Remote sensing in entomology”, Annu. Rev. Entomol., Vol. 34, (1989), pp. 247–271.

    Article  Google Scholar 

  14. J.L. Hatfield and P.J. Pinter: “Remote sensing for crop protection”, Crop Protect., Vol. 12, (1993), pp. 403–413.

    Article  Google Scholar 

  15. M.S. Moran, Y. Inoue and E.M. Barnes: “Opportunities and limitations for image-based remote sensing in precision crop management”, Rem. Sens. Environ., Vol. 61, (1997), pp. 319–346.

    Article  Google Scholar 

  16. H.E. Nilsson: “Remote sensing and image analysis in plant pathology”, Can. J. Plant Pathol., Vol. 17, (1995a), pp. 154–166.

    Article  Google Scholar 

  17. D.M. Gates, H.J. Keegan, J.C. Schleter and V.R. Weidner: “Spectral properties of plants”, Appl. Optics, Vol. 4, (1965), pp. 11–20.

    Article  Google Scholar 

  18. H.E. Nilsson: “Remote sensing and image analysis in plant pathology”, Annu. Rev. Phytopath., Vol. 15, (1995), pp. 489–527.

    Article  Google Scholar 

  19. H.E. Nilsson: Application of remote sensing methods and image analysis at macroscopic and microscopic levels, Miscellaneous Publication 7, University of Minnesota Agricultural Experiment Station, St. Paul, 1980.

    Google Scholar 

  20. J.J. Burdon: Diseases and Plant Population Biology, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  21. N.D. Paul and P.G. Ayres: “Effects of rust and post-infection drought on photosynthesis, growth, and water relations in groundsel”, Plant Pathol., Vol. 33, (1984), pp. 561–569.

    Google Scholar 

  22. N.D. Paul and P.G. Ayres: “Water stress modifies intraspecific interference between rust (Puccinia lagenophorae Cooke) — infected and healthy groundsel (Senecio vulgaris L.)”, New Phytol., Vol. 106, (1987), pp. 555–566.

    Google Scholar 

  23. G.M. Murray and J.F. Brown: “The incidence and relative importance of wheat diseases in Australia”, Australas. Plant Pathol., Vol. 16, (1987), pp. 34–37.

    Article  Google Scholar 

  24. J.P. Brennan and G.M. Murray: “Australian wheat diseases: assessing their economic importance”, J. Agr. Sci., Vol. 2, (1988), pp. 26–35.

    Google Scholar 

  25. S. Graeff, D. Steffens and S. Schubert: “Use of reflectance measurements for the early detection of N, P, Mg, and Fe deficiencies in Zea mays L.”, J. Plant Nutr. Soil Sci., Vol. 164, (2001), pp. 445–450.

    Article  CAS  Google Scholar 

  26. S. Graeff and W. Claupein: “Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements”, Eur. J. Agron., Vol. 19, (2003), pp. 611–618.

    Article  CAS  Google Scholar 

  27. P.D. Lancashire, H. Bleiholder, T. van den Boom, P. Langelüddeke, R. Strauss, E. Weber and A. Witzenberger: “A uniform decimal code for growth stages of crops and weeds”, Ann. Appl. Biol., Vol. 119, (1991), pp. 561–601.

    Article  Google Scholar 

  28. S. Graeff: Früherkennung von Ernährungsstörungen bei Zea mays L. mittels Blatt-Reflexionsmessungen, Thesis (PhD), University of Gießen, 2000.

  29. CIE: Colorimetry, 2nd ed., Publication CIE No. 15.2, Commission Internationale de ls’Éclairage, Vienna, 1986.

    Google Scholar 

  30. BSA: Richtlinien für die Durchführung von landwirtschaftlichen Wertprüfungen und Sortenversuchen, Verlag Alfred Strothe, Frankfurt a.M., 1988.

    Google Scholar 

  31. S.E. Allen: Chemical analysis of ecological materials, 2nd ed., Blackwell Scientific Publications, Oxford, 1989.

    Google Scholar 

  32. A. Dumas: “Stickstoffbestimmung nach Dumas”, Die Praxis des organischen Chemikers, Vol. 41, (1962), pp. 45–51.

    Google Scholar 

  33. J.C. Deguise and H. McNairn: “Hyperspectral remote sensing for precision agriculture”, In: Proceedings of Fifth International Conference on Precision Agriculture, Bloomington (USA), 2000, CD.

  34. T.J. Malthus and A.C. Madeira: “High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae”, Rem. Sens. Environ., Vol. 45, (1993), pp. 107–116.

    Article  Google Scholar 

  35. V.P. Polischuk, T.M. Shadchina, T.I. Kompanetz, I.G. Budzanivskaya and A.A. Sozinov: “Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection”, Arch. Phytopath. Plant Protect., Vol. 31(1), (1997), pp. 115–119.

    Article  Google Scholar 

  36. J.G. Hansen: “Use of multispectral radiometry in wheat yellow rust experiments”, Bull. EPPO, Vol. 21, (1991), pp. 651–658.

    Article  Google Scholar 

  37. H.E. Nilsson and L. Johnsson: “Hand-held radiometry of barley infected by barley stripe disease in a field experiment”, J. Plant Dis. Protect., Vol. 103, (1996), pp. 517–526.

    Google Scholar 

  38. F.W. Nutter (Jr.) and R.H. Littrell: “Relationships between defoliation, canopy reflectance and pod yield in the peanut-late leafspot pathosystem”, Crop Protect., Vol. 15, (1996), pp. 135–142.

    Article  Google Scholar 

  39. F.W. Nutter (Jr.), R.H. Littrell and T.B. Brenneman: “Utilization of a multispectral radiometer to evaluate fungicide efficacy to control late leaf spot in peanut”, Phytopath., Vol. 80, (1990), pp. 102–108.

    Google Scholar 

  40. G. Guyot: “Optical properties of vegetation canopies”, In: M.D. Steven and J.A. Clark (Eds.): Applications of Remote Sensing in Agriculture, Butterworths, London, 1990, pp. 19–43.

    Google Scholar 

  41. L. Grant: “Diffuse and specular characteristics of leaf reflectance”, Rem. Sens. Environ., Vol. 22, (1987), pp. 309–322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Graeff, S., Link, J. & Claupein, W. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. cent.eur.j.biol. 1, 275–288 (2006). https://doi.org/10.2478/s11535-006-0020-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-006-0020-8

Keywords

Navigation