Skip to main content
Log in

One-dimensional Bose-Hubbard model with pure three-body interactions

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The extended Bose-Hubbard model with pure three-body local interactions is studied using the Density Matrix Renormalization Group approach. The shapes of the first two insulating lobes are discussed, and the values of the critical tunneling for which the system undergoes the quantum phase transition from insulating to superfluid phase are predicted. It is shown that stability of insulating phases, in contrast to the standard Bose-Hubbard model, is enhanced for larger fillings. It is also shown that, on the tip of the boundary of the insulating phase, the model under consideration belongs to the Berenzinskii-Kosterlitz-Thouless universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  2. I. Bloch, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices — Simulating quantum many-body systems (Oxford University Press, Oxford, 2012)

    Book  MATH  Google Scholar 

  4. M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  5. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  6. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  7. S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Nature 465, 197 (2010)

    Article  ADS  Google Scholar 

  8. T. Sowiński, Phys. Rev. A 85, 065601 (2012)

    Article  ADS  Google Scholar 

  9. B.-l. Chen, X.-b. Huang, S.-p. Kou, Y. Zhang, Phys. Rev. A 78, 043603 (2008)

    Article  ADS  Google Scholar 

  10. K. Zhou, Z. Liang, Z. Zhang, Phys. Rev. A 82, 013634 (2010)

    Article  ADS  Google Scholar 

  11. A. Safavi-Naini, J. von Stecher, B. Capogrosso-Sansone, S. T. Rittenhouse, Phys. Rev. Lett. 109, 135302 (2012)

    Article  ADS  Google Scholar 

  12. J. Silva-Valencia A. M. C. Souza, Phys. Rev. A 84, 065601 (2011)

    Article  ADS  Google Scholar 

  13. H. Al-Jibbouri, I. Vidanović, A. Balaž, A. Pelster, J. Phys. B 46, 065303 (2013)

    Article  ADS  Google Scholar 

  14. J. Silva-Valencia A. Souza, Eur. Phys. J. B 85, 161 (2012)

    Article  ADS  Google Scholar 

  15. T. Sowiński, R.W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein, arXiv:1304.4835 (2013)

  16. M. Singh, A. Dhar, T. Mishra, R. V. Pai, B. P. Das, Phys. Rev. A 85, 051604 (2012)

    Article  ADS  Google Scholar 

  17. F. K. Abdullaev M. Salerno, Phys. Rev. A 72, 033617 (2005)

    Article  ADS  Google Scholar 

  18. T. Sowiński, R.W. Chhajlany, Phys. Scr. T 160, 014038 (2014)

    Article  ADS  Google Scholar 

  19. L. Mazza, M. Rizzi, M. Lewenstein, J. I. Cirac, Phys. Rev. A 82, 043629 (2010)

    Article  ADS  Google Scholar 

  20. A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009)

    Article  ADS  Google Scholar 

  21. H. P. Büchler, A. Micheli, P. Zoller, Nature Phys. 3, 726 (2007)

    Article  ADS  Google Scholar 

  22. K. P. Schmidt, J. Dorier, A. M. Läuchli, Phys. Rev. Lett. 101, 150405 (2008)

    Article  ADS  Google Scholar 

  23. B. Capogrosso-Sansone, S. Wessel, H. P. Büchler, P. Zoller, G. Pupillo, Phys. Rev. B 79, 020503 (2009)

    Article  ADS  Google Scholar 

  24. V. F. Elesin, V. Kashurnikov, L. A. Openov, JETP Lett. 60, 174 (1994)

    ADS  Google Scholar 

  25. S. Ejima, F. Lange, H. Fehske, F. Gebhard, K. zu Münster, Phys. Rev. A 88, 063625 (2013)

    Article  ADS  Google Scholar 

  26. V. Berenzinskii, Sov. Phys. JETP 34, 610 (1972)

    ADS  Google Scholar 

  27. J. M. Kosterlitz D. J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  28. P. Calabrese J. Cardy, J. Stat. Mech. Theor. Exp. 2004, P06002 (2004)

  29. N. Laflorencie, E. S. Sørensen, M.-S. Chang, I. Affleck, Phys. Rev. Lett. 96, 100603 (2006)

    Article  ADS  Google Scholar 

  30. M. Cazalilla, R. Citro, T. Giamarchi, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  31. S. Ejima, H. Fehske, F. Gebhard, K. zu Münster, M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. A 85, 053644 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sowiński.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowiński, T. One-dimensional Bose-Hubbard model with pure three-body interactions. centr.eur.j.phys. 12, 473–479 (2014). https://doi.org/10.2478/s11534-014-0481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0481-8

Keywords

Navigation