Skip to main content
Log in

Thermal self-action effects for acoustic beams containing fronts in a Maxwell relaxing fluid

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

This paper examines the thermal self-action of acoustic beams in a Maxwell relaxing fluid. This type of thermal self-action differs from that in a Newtonian fluid and behaves differently depending on a ratio of sound period and time of thermodynamic relaxation. The self-action which relates to sound beams containing shock fronts is also discussed. In addition, stationary and non-stationary types of self-action are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Askaryan, JETP Lett. 4, 279 (1966)

    ADS  Google Scholar 

  2. S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, Sov. Phys. Usp. 10, 609 (1968)

    Article  ADS  Google Scholar 

  3. G. B. Whitham, Linear and nonlinear waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  4. O. V. Rudenko, S. I. Soluyan, Theoretical foundations of nonlinear acoustic (Plenum, New York, 1977)

    Book  Google Scholar 

  5. M. F. Hamilton, V. A. Khokhlova, O. V. Rudenko, J. Acoust. Soc. Am. 101, 1298 (1997)

    Article  ADS  Google Scholar 

  6. G. A. Askaryan, JETP Lett. 4, 99 (1966)

    ADS  Google Scholar 

  7. N. S. Bakhvalov, Ya. M. Zhileikin, E. A. Zabolotskaya, Nonlinear theory of sound beams (American Institute of Physics, New York, 1987)

    Google Scholar 

  8. V. A. Assman et al., JETP Lett. 41, 182 (1985)

    ADS  Google Scholar 

  9. V. G. Andreev et al., JETP Lett. 41, 381 (1985)

    Google Scholar 

  10. G. A. Askaryan, JETP Lett. 4, 78 (1976)

    Google Scholar 

  11. O. V. Rudenko, O. A. Sapozhnikov, Physics-Uspekhi 47, 907 (2004)

    Article  ADS  Google Scholar 

  12. L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, Vol. 6, Fluid Mechanics, 4th edition (Nauka, Moscow, 1988, Pergamon, NN, 1987)

    Google Scholar 

  13. V. N. Alekseev, S. A. Rybak, Acoust. Phys. 48, 511 (2002)

    Article  ADS  Google Scholar 

  14. A. Perelomova, W. Pelc-Garska, Cent. Eur. J. Phys. 8, 855 (2010)

    Article  Google Scholar 

  15. O. V. Rudenko, Acoust. Phys.+ 56, 457 (2010)

    Article  ADS  Google Scholar 

  16. V. A. Krasilnikov, V. V. Krylov, Introduction to physical acoustics (Nauka, Moscow, 1984)

    Google Scholar 

  17. G. W. Pierce, Proc. Am. Acad. Sci. 60, 271 (1925)

    Article  Google Scholar 

  18. T. P. Abello, Proceedings of the National Academy of Sciences 13, 699 (1927)

    Article  ADS  Google Scholar 

  19. A. M. Prokhorov, M. Waxman (Eds.), The Great Soviet Encyclopedia, 3rd Edition (Macmillan, NY, 1973)

    Google Scholar 

  20. O. V. Rudenko, M. M. Sagatov, O. A. Sapozhnikov, Sov. Phys. JETP 71, 449 (1990)

    Google Scholar 

  21. A. I. Osipov, A. V. Uvarov, Sov. Phys. Usp. 35, 903 (1992)

    Article  ADS  Google Scholar 

  22. N. E. Molevich, Acoust. Phys.+ 49, 229 (2003)

    ADS  Google Scholar 

  23. M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, Theory of waves (In Russian), (Nauka, Moscow, 1990)

    Google Scholar 

  24. A. A. Karabutov, O. V. Rudenko, O. A. Sapozhnikov, Acoust. Phys.+ 34, 371 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Perelomova.

About this article

Cite this article

Perelomova, A. Thermal self-action effects for acoustic beams containing fronts in a Maxwell relaxing fluid. centr.eur.j.phys. 12, 315–322 (2014). https://doi.org/10.2478/s11534-014-0449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0449-8

Keywords

Navigation