Skip to main content
Log in

Classical analogue of the statistical operator

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We advance the notion of a classical density matrix, as a classical analogue of the quantum mechanical statistical operator, and investigate its main properties. In the case of composite systems a partial trace-like operation performed upon the global classical density matrix leads to a marginal density matrix describing a subsystem. In the case of dynamically independent subsystems (that is, non-interacting subsystems) this marginal density matrix evolves locally, its behavior being completely determined by the local phase-space flow associated with the subsystem under consideration. However, and in contrast with the case of ordinary marginal probability densities, the marginal classical density matrix contains information concerning the statistical correlations between a subsystem and the rest of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Zurek (Ed.), Complexity, Entropy, and the Physics of Information (Addison-Wesley, Redwood City, California, 1990)

    Google Scholar 

  2. C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  3. B. R. Frieden, B. H. Soffer, Phys. Rev. E 42, 2274 (1995)

    Article  ADS  Google Scholar 

  4. B. R. Frieden, Physics from Fisher Information (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  5. B. R. Frieden, Science from Fisher Information (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  6. H. S. Leff, A. F. Rex (Eds.), Maxwell’s Demons 2: Entropy, Classical and Quantum Information (Institute of Physics Publishing, Bristol, Philadelphia, 2003)

    Google Scholar 

  7. N. Margolus, L. B. Levitin, Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  8. A. Daffertshofer, A. R. Plastino, A. Plastino, Phys. Rev. Lett. 88, 210601 (2002)

    Article  ADS  Google Scholar 

  9. A. R. Plastino, A. Daffertshofer, Phys. Rev. Lett. 93, 138701 (2004)

    Article  ADS  Google Scholar 

  10. B. R. Frieden, B. H. Soffer, Phys. Rev. A 74, 052108 (2006)

    Article  ADS  Google Scholar 

  11. M. J. W. Hall, Phys. Rev. A 49, 2602 (1999)

    Article  ADS  Google Scholar 

  12. T. Yamano, Eur. Phys. J. B 86, 363 (2013)

    Article  ADS  Google Scholar 

  13. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  14. C. Zander, A. R. Plastino, A. Plastino, M. Casas, J. Phys. A: Math. Theor. 40, 2861 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. A. Borras, C. Zander, A. R. Plastino, M. Casas, A. Plastino, EPL 84, 30007 (2008)

    Article  MathSciNet  Google Scholar 

  16. E. T. Jaynes, In: R. D. Rosenkrantz (Ed.), Papers on Probability, Statistics and Statistical Physics (Dordrecht, Reidel, 1987)

  17. A. R. Plastino, A. Plastino, Phys. Lett. A 181, 446 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. R. Plastino, H. G. Miller, A. Plastino, Phys. Rev. E 46, 3927 (1997)

    Article  ADS  Google Scholar 

  19. W. R. Loewenstein, The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life (Oxford University Press, New York, 1999)

    Google Scholar 

  20. R. W. Spekkens, Phys. Rev. A 75, 032110 (2007)

    Article  ADS  Google Scholar 

  21. A. R. Plastino, A. Daffertshofer, EPL 84, 30006 (2008)

    Article  Google Scholar 

  22. C. Essex, Planet. Space Sci. 32, 1035 (1984)

    Article  ADS  Google Scholar 

  23. C. I. Poser, I. C. Sanchez, Macromolecules 14, 370 (1981)

    Article  ADS  Google Scholar 

  24. O. Vilaseca, L.F. Vega, Fluid Phase Equilibr. 306, 4 (2011)

    Article  Google Scholar 

  25. C. Zander, A. R. Plastino, A. Plastino, M. Casas, S. Curilef, Entropy 11, 586 (2009)

    Article  MathSciNet  Google Scholar 

  26. L. Susskind, J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe (World Scientific Publishing, Singapore, 2005)

    Google Scholar 

  27. C. Zander, A. R. Plastino, EPL 86, 18004 (2009)

    Article  ADS  Google Scholar 

  28. L. Susskind, The Black Hole War (Back Bay Books, New York, 2008)

    Google Scholar 

  29. E. H. Kerner, Gibbs Ensemble, Biological Ensemble (Gordon and Breach, New York, 1972)

    Google Scholar 

  30. E. H. Kerner, Phys. Lett. A 151, 401 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Nambu, Phys. Rev. D 7, 2405 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. A. R. Plastino, A. Plastino, Physica A 232, 458 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. R. M. Yamaleev, Ann. Phys. 292, 157 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. P. Guha, J. Math. Phys. 43, 4035 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. A. R. Plastino, A. Plastino, L. R. da Silva, M. Casas, Physica A 271, 343 (1999)

    Article  ADS  Google Scholar 

  36. G. Roston, A. R. Plastino, M. Casas, A. Plastino, L. R. da Silva, Eur. Phys. J. B 48, 87 (2005)

    Article  ADS  Google Scholar 

  37. S. Mongkolsakulvong, P. Chaikhan, T.D. Frank, Eur. Phys. J. B 85, 90 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Plastino.

About this article

Cite this article

Plastino, A., Plastino, A.R. & Zander, C. Classical analogue of the statistical operator. centr.eur.j.phys. 12, 168–174 (2014). https://doi.org/10.2478/s11534-014-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0438-y

Keywords

Navigation