Skip to main content
Log in

Path-wise versus kinetic modeling for equilibrating non-Langevin jump-type processes

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We discuss two independent methods of solution of a master equation whose biased jump transition rates account for long jumps of Lévy-stable type and admit a Boltzmannian (thermal) equilibrium to arise in the large time asymptotics of a probability density function ρ(x, t). Our main goal is to demonstrate a compatibility of a direct solution method (an explicit, albeit numerically assisted, integration of the master equation) with an indirect pathwise procedure, recently proposed in [Physica A 392, 3485, (2013)] as a valid tool for a dynamical analysis of non-Langevin jump-type processes. The path-wise method heavily relies on an accumulation of large sample path data, that are generated by means of a properly tailored Gillespie’s algorithm. Their statistical analysis in turn allows to infer the dynamics of ρ(x, t). However, no consistency check has been completed so far to demonstrate that both methods are fully compatible and indeed provide a solution of the same dynamical problem. Presently we remove this gap, with a focus on potential deficiencies (various cutoffs, including those upon the jump size) of approximations involved in simulation routines and solutions protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and www (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  3. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  4. M. F. Shlesinger, G.M. Zaslavsky, U. Frisch (Ed.), Lévy flights and Related Topics in Physics (Springer-Verlag, Berlin, 1995); P. Garbaczewski, M. Wolf, A. Weron (Ed.), Chaos: The Interplay between Deterministic and Stochastic Behavior (Springer-Verlag, Berlin, 1995)

    Book  MATH  Google Scholar 

  5. M.D. Glinchuk, A.V. Ragylya, V.A. Stephanovich, Nanoferroics (Springer, Dordrecht, 2013)

    Book  Google Scholar 

  6. M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and beyond (World Scientific. Singapore, 1987)

    MATH  Google Scholar 

  7. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction (Springer, Dordrecht, 2002)

    Book  MATH  Google Scholar 

  8. S. Jespersen, R. Metzler, H. C. Fogedby, Phys. Rev. E 59, 2736, (1999)

    Article  ADS  Google Scholar 

  9. R. Metzler, E. Barkai, J. Klafter, Europhys. Lett. 46, 431, (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Eliazar, J. Klafter, J. Stat. Phys. 119, 165, (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. P. Garbaczewski, V. Stephanovich, Open Systems Inf. Dyn., 17, 287, (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Garbaczewski, V. A. Stephanovich, Physica A 389, 4419, (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Garbaczewski, V. A. Stephanovich, D. Kędzierski, Physica A 390, 990, (2011)

    Article  ADS  Google Scholar 

  14. M. Zaba, P. Garbaczewski, V. Stephanovich, Physica A 392, 3485, (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Brockmann, T. Geisel, Phys. Rev. Lett. 90, 170601, (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. V. V. Belik, D. Brockmann, New. J. Phys. 9, 54, (2007)

    Article  ADS  Google Scholar 

  17. M. Zaba, P. Garbaczewski, International Journal of Statistical Mechanics 2013, 738345 (2013)

    Article  Google Scholar 

  18. K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  19. J. Lorinczi, F. Hiroshima, V. Betz, Feyman-Kac-Type Theorems and Gibbs Measures on Path Space, (Studies in Mathematics 34, Walter de Gruyter, Berlin, 2011)

    Book  Google Scholar 

  20. R. N. Mantegna, H. E. Stanley, Phys. Rev. Lett. 73, 2946, (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. P. Garbaczewski, R. Olkiewicz, J. Math. Phys. 41, 6843, (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. E. M. Lifshitz, L. P. Pitaevskii, Physical Kinetics (Pergamon Press, New York, 1993)

    Google Scholar 

  23. A. Abragam, Principles of Nuclear Magnetism, (Oxford University Press, Oxford, 2002)

    Google Scholar 

  24. A.A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000); see also A.A. Dragulescu PhD Thesis, arXiv:cond-mat/0307341

    Article  ADS  Google Scholar 

  25. S. Ispolatov, P. L. Krapivsky, S. Redner, Eur. Phys. J. B 2, 267 (1998)

    Article  ADS  Google Scholar 

  26. P. Garbaczewski, V. A. Stephanovich, J. Math. Phys. 54, 072103, (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Garbaczewski.

About this article

Cite this article

Żaba, M., Garbaczewski, P. & Stephanovich, V.A. Path-wise versus kinetic modeling for equilibrating non-Langevin jump-type processes. centr.eur.j.phys. 12, 175–184 (2014). https://doi.org/10.2478/s11534-014-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0432-4

Keywords

Navigation