Skip to main content
Log in

Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory

  • Reveiw Article
  • Published:
Central European Journal of Physics

Abstract

We review our recent work on ab initio nonadiabatic molecular dynamics, based on linear-response timedependent density functional theory for the calculation of the nuclear forces, potential energy surfaces, and nonadiabatic couplings. Furthermore, we describe how nuclear quantum dynamics beyond the Born-Oppenheimer approximation can be performed using quantum trajectories. Finally, the coupling and control of an external electromagnetic field with mixed quantum/classical trajectory surface hopping is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009)

    Book  Google Scholar 

  2. A. W. Jasper, S. Nangia, C. Zhu, D. G. Truhlar, Acc. Chem. Res. 39, 101 (2006)

    Article  Google Scholar 

  3. K. Takatsuka, T. Yonehara, Phys. Chem. Chem. Phys. 13, 4987 (2011)

    Article  Google Scholar 

  4. T. Yonehara, K. Hanasaki, K. Takatsuka, Chem. Rev. 112, 499 (2012)

    Article  Google Scholar 

  5. M. H. Beck, A. Jäckle, G. A. Worth, H. D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  ADS  Google Scholar 

  6. J. C. Tully, R. K. Preston, J. Chem. Phys. 55, 562 (1971)

    Article  ADS  Google Scholar 

  7. J. C. Tully, J. Chem. Phys. 93, 1061 (1990)

    Article  ADS  Google Scholar 

  8. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Bohm, Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. R. Holland, The Quantum Theory of Motion — An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics (Cambridge University Press, 1993)

    Book  Google Scholar 

  12. R. E. Wyatt, Quantum dynamics with trajectories: Introduction to quantum hydrodynamics (Interdisciplinary applied mathematics, Springer, 2005)

    Google Scholar 

  13. R. E. Wyatt, C. L. Lopreore, G. Parlant, J. Chem. Phys. 114, 5113 (2001)

    Article  ADS  Google Scholar 

  14. C. L. Lopreore, R. E. Wyatt, J. Chem. Phys. 116, 1228 (2002)

    Article  ADS  Google Scholar 

  15. B. Poirier, G. Parlant, J. Phys. Chem. A 111, 10400 (2007)

    Article  Google Scholar 

  16. S. Garashchuk, V. A. Rassolov, G. C. Schatz, J. Chem. Phys. 123, 174108 (2005)

    Article  ADS  Google Scholar 

  17. B. F. E. Curchod, I. Tavernelli, U. Rothlisberger, Phys. Chem. Chem. Phys. 13, 3231 (2011)

    Article  Google Scholar 

  18. B. F. E. Curchod, U. Rothlisberger, I. Tavernelli, Chimia 66, 174 (2012)

    Article  Google Scholar 

  19. B. F. E. Curchod, I. Tavernelli, J. Chem. Phys. 138, 184112 (2013)

    Article  ADS  Google Scholar 

  20. E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  21. M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (Singapore, World Scientific, 1995), p. 155

  22. M. Petersilka, U. J. Gossmann, E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)

    Article  ADS  Google Scholar 

  23. H. Appel, E. K. U. Gross, K. Burke, Phys. Rev. Lett. 90, 043005 (2003)

    Article  ADS  Google Scholar 

  24. B. F. E. Curchod, U. Rothlisberger, I. Tavernelli, ChemPhysChem 14, 1314 (2013)

    Article  Google Scholar 

  25. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)

    MATH  Google Scholar 

  26. E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007)

    Article  ADS  Google Scholar 

  27. J. Hutter, J. Chem. Phys. 118, 3928 (2003)

    Article  ADS  Google Scholar 

  28. I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Mol. Struc. (Theochem) 914, 22 (2009)

    Article  Google Scholar 

  29. I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, Phys. Rev. A 81, 052508 (2010)

    Article  ADS  Google Scholar 

  30. I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, Chem. Phys. 391, 101 (2011)

    Article  ADS  Google Scholar 

  31. CPMD, Copyright IBM Corp 1990-2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001 (2011), http://www.cpmd.org

    Google Scholar 

  32. I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)

    Article  ADS  Google Scholar 

  33. I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)

    Article  ADS  Google Scholar 

  34. S. Tretiak, S. Mukamel, Chem. Rev. 102, 3171 (2002)

    Article  Google Scholar 

  35. A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  36. I. Tavernelli, B. F. E. Curchod, A. Laktionov, U. Rothlisberger, J. Chem. Phys. 133, 194104 (2010)

    Article  ADS  Google Scholar 

  37. M. Thachuk, M. Y. Ivanov, D. M. Wardlaw, J. Chem. Phys 105, 4094 (1996)

    Article  ADS  Google Scholar 

  38. G. A. Jones, A. Acocella, F. Zerbetto, J. Phys. Chem. A 112, 9650 (2008)

    Article  Google Scholar 

  39. R. Mitric, J. Petersen, V. Bonacic-Koutecký, Phys. Rev. A 79, 053416 (2009)

    Article  ADS  Google Scholar 

  40. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theory Comput. 7, 1253 (2011)

    Article  Google Scholar 

  41. B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli, Phys. Rev. A 84, 042507 (2011)

    Article  ADS  Google Scholar 

  42. B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli, Chimia 67, 218 (2013)

    Article  Google Scholar 

  43. V. Engel, C. Meier, D. J. Tannor, Local Control Theory: Recent Applications to Energy and Particle Transfer Processes in Molecules (John Wiley & Sons, Inc., 2009), pp. 29–101, ISBN 9780470431917

    Google Scholar 

  44. T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Tavernelli.

About this article

Cite this article

Curchod, B.F.E., Penfold, T.J., Rothlisberger, U. et al. Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory. centr.eur.j.phys. 11, 1059–1065 (2013). https://doi.org/10.2478/s11534-013-0321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0321-2

Keywords

Navigation