Advertisement

Central European Journal of Physics

, Volume 11, Issue 9, pp 1059–1065 | Cite as

Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory

  • Basile F. E. Curchod
  • Thomas J. Penfold
  • Ursula Rothlisberger
  • Ivano Tavernelli
Reveiw Article
  • 122 Downloads

Abstract

We review our recent work on ab initio nonadiabatic molecular dynamics, based on linear-response timedependent density functional theory for the calculation of the nuclear forces, potential energy surfaces, and nonadiabatic couplings. Furthermore, we describe how nuclear quantum dynamics beyond the Born-Oppenheimer approximation can be performed using quantum trajectories. Finally, the coupling and control of an external electromagnetic field with mixed quantum/classical trajectory surface hopping is discussed.

Keywords

nonadiabatic dynamics time-dependent density functional theory excited state ab initio molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009)CrossRefGoogle Scholar
  2. [2]
    A. W. Jasper, S. Nangia, C. Zhu, D. G. Truhlar, Acc. Chem. Res. 39, 101 (2006)CrossRefGoogle Scholar
  3. [3]
    K. Takatsuka, T. Yonehara, Phys. Chem. Chem. Phys. 13, 4987 (2011)CrossRefGoogle Scholar
  4. [4]
    T. Yonehara, K. Hanasaki, K. Takatsuka, Chem. Rev. 112, 499 (2012)CrossRefGoogle Scholar
  5. [5]
    M. H. Beck, A. Jäckle, G. A. Worth, H. D. Meyer, Phys. Rep. 324, 1 (2000)ADSCrossRefGoogle Scholar
  6. [6]
    J. C. Tully, R. K. Preston, J. Chem. Phys. 55, 562 (1971)ADSCrossRefGoogle Scholar
  7. [7]
    J. C. Tully, J. Chem. Phys. 93, 1061 (1990)ADSCrossRefGoogle Scholar
  8. [8]
    D. Bohm, Phys. Rev. 85, 166 (1952)MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Bohm, Phys. Rev. 85, 180 (1952)MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. [11]
    P. R. Holland, The Quantum Theory of Motion — An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics (Cambridge University Press, 1993)CrossRefGoogle Scholar
  12. [12]
    R. E. Wyatt, Quantum dynamics with trajectories: Introduction to quantum hydrodynamics (Interdisciplinary applied mathematics, Springer, 2005)Google Scholar
  13. 13]
    R. E. Wyatt, C. L. Lopreore, G. Parlant, J. Chem. Phys. 114, 5113 (2001)ADSCrossRefGoogle Scholar
  14. [14]
    C. L. Lopreore, R. E. Wyatt, J. Chem. Phys. 116, 1228 (2002)ADSCrossRefGoogle Scholar
  15. [15]
    B. Poirier, G. Parlant, J. Phys. Chem. A 111, 10400 (2007)CrossRefGoogle Scholar
  16. [16]
    S. Garashchuk, V. A. Rassolov, G. C. Schatz, J. Chem. Phys. 123, 174108 (2005)ADSCrossRefGoogle Scholar
  17. [17]
    B. F. E. Curchod, I. Tavernelli, U. Rothlisberger, Phys. Chem. Chem. Phys. 13, 3231 (2011)CrossRefGoogle Scholar
  18. [18]
    B. F. E. Curchod, U. Rothlisberger, I. Tavernelli, Chimia 66, 174 (2012)CrossRefGoogle Scholar
  19. [19]
    B. F. E. Curchod, I. Tavernelli, J. Chem. Phys. 138, 184112 (2013)ADSCrossRefGoogle Scholar
  20. [20]
    E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)ADSCrossRefGoogle Scholar
  21. [21]
    M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (Singapore, World Scientific, 1995), p. 155Google Scholar
  22. [22]
    M. Petersilka, U. J. Gossmann, E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)ADSCrossRefGoogle Scholar
  23. [23]
    H. Appel, E. K. U. Gross, K. Burke, Phys. Rev. Lett. 90, 043005 (2003)ADSCrossRefGoogle Scholar
  24. [24]
    B. F. E. Curchod, U. Rothlisberger, I. Tavernelli, ChemPhysChem 14, 1314 (2013)CrossRefGoogle Scholar
  25. [25]
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)zbMATHGoogle Scholar
  26. [26]
    E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007)ADSCrossRefGoogle Scholar
  27. [27]
    J. Hutter, J. Chem. Phys. 118, 3928 (2003)ADSCrossRefGoogle Scholar
  28. [28]
    I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Mol. Struc. (Theochem) 914, 22 (2009)CrossRefGoogle Scholar
  29. [29]
    I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, Phys. Rev. A 81, 052508 (2010)ADSCrossRefGoogle Scholar
  30. [30]
    I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, Chem. Phys. 391, 101 (2011)ADSCrossRefGoogle Scholar
  31. [31]
    CPMD, Copyright IBM Corp 1990-2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001 (2011), http://www.cpmd.org Google Scholar
  32. [32]
    I. Tavernelli, E. Tapavicza, U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)ADSCrossRefGoogle Scholar
  33. [33]
    I. Tavernelli, B. F. E. Curchod, U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)ADSCrossRefGoogle Scholar
  34. [34]
    S. Tretiak, S. Mukamel, Chem. Rev. 102, 3171 (2002)CrossRefGoogle Scholar
  35. [35]
    A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  36. [36]
    I. Tavernelli, B. F. E. Curchod, A. Laktionov, U. Rothlisberger, J. Chem. Phys. 133, 194104 (2010)ADSCrossRefGoogle Scholar
  37. [37]
    M. Thachuk, M. Y. Ivanov, D. M. Wardlaw, J. Chem. Phys 105, 4094 (1996)ADSCrossRefGoogle Scholar
  38. [38]
    G. A. Jones, A. Acocella, F. Zerbetto, J. Phys. Chem. A 112, 9650 (2008)CrossRefGoogle Scholar
  39. [39]
    R. Mitric, J. Petersen, V. Bonacic-Koutecký, Phys. Rev. A 79, 053416 (2009)ADSCrossRefGoogle Scholar
  40. [40]
    M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theory Comput. 7, 1253 (2011)CrossRefGoogle Scholar
  41. [41]
    B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli, Phys. Rev. A 84, 042507 (2011)ADSCrossRefGoogle Scholar
  42. [42]
    B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli, Chimia 67, 218 (2013)CrossRefGoogle Scholar
  43. [43]
    V. Engel, C. Meier, D. J. Tannor, Local Control Theory: Recent Applications to Energy and Particle Transfer Processes in Molecules (John Wiley & Sons, Inc., 2009), pp. 29–101, ISBN 9780470431917Google Scholar
  44. [44]
    T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Basile F. E. Curchod
    • 1
  • Thomas J. Penfold
    • 1
    • 2
    • 3
  • Ursula Rothlisberger
    • 1
  • Ivano Tavernelli
    • 1
  1. 1.Laboratory of Computational Chemistry and BiochemistryEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Laboratoire de Spectroscopie UltrarapideEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.SwissFELPaul Scherrer Inst.VilligenSwitzerland

Personalised recommendations