Skip to main content
Log in

Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hifer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001)

    Google Scholar 

  2. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  3. R.C. Koeller, J. Appl. Mech. 51, 299 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. H. H. Sun, A. A. Abdelwahed, B. Onaral, IEEE T. Autom. Control 29, 441 (1984)

    Article  MATH  Google Scholar 

  5. M. Ichise, Y. Nagayanagi, T. Kojima, J. Electroanal. Chem. 33, 253 (1971)

    Article  Google Scholar 

  6. O. Heaviside, Electromagnetic theory (Chelsea, New York, 1971)

    Google Scholar 

  7. N. Laskin, Physica A 287, 482 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Kunsezov, A. Bulagc, G. D. Dang, Phys. Rev. Lett. 82, 1136 (1999)

    Article  ADS  Google Scholar 

  9. T.T. Hartley, C.F. Lorenzo, Nonlinear Dyn. 29, 201 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. S.G. Samko, A.A. Kilbas, O.I. Maricev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, 1993)

    MATH  Google Scholar 

  11. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier Science, 2006)

    MATH  Google Scholar 

  12. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific 2012)

    Google Scholar 

  13. L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999)

    Article  ADS  Google Scholar 

  15. M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization (World Scientific, Singapore, 1996)

    MATH  Google Scholar 

  16. S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995)

    Article  ADS  Google Scholar 

  17. K. Murali, M. Lakshmanan, Appld. Math. Mech. 11, 1309 (2003)

    Google Scholar 

  18. A. Razminia, D. Baleanu, J. Comput. Nonlin. Dyn. 8, 31012, (2013)

    Article  Google Scholar 

  19. J. W. Shuai, K. W. Wong, Phys. Rev. E 57, 7002 (1998)

    Article  ADS  Google Scholar 

  20. R. Roy, K. S. Thornburg, Phys. Rev. Lett. 72, 2009 (1994)

    Article  ADS  Google Scholar 

  21. M. Srivastava, S. K. Agrawal, S. Das, Int. J. Nonlinear Sci. 13, 482 (2012)

    MathSciNet  Google Scholar 

  22. M. T. Yassen, Chaos Soliton. Fract. 23, 1527 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  23. X. Wu, J. Lü, Chaos Soliton. Fract. 18, 721 (2003)

    Article  ADS  MATH  Google Scholar 

  24. H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012)

    Article  Google Scholar 

  25. S. K. Agrawal, M. Srivastava, S. Das, Chaos Soliton. Fract. 45, 737 (2012)

    Article  Google Scholar 

  26. Y. Zhang, J. Sun, Phys. Lett. A 330, 442 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)

    Article  ADS  Google Scholar 

  28. G. Si, Z. Sun, Y. Zhang, W. Chen, Nonlinear Anal. Real World Appl. 13, 1761 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Zhoua, W. Zhu, Nonlinear Anal. Real World Appl. 12, 811 (2011)

    Article  MathSciNet  Google Scholar 

  30. J. P. Yan, C. P. Li, Chaos Soliton. Fract. 32, 725 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. G. H. Erjaee, H. Taghvafard, Commun. Nonlinear Sci. Numer. Simulat. 16, 4079 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. X. Y. Wang, J. M. Song, Commun Nonlinear Sci. Numer. Simulat. 14, 3351 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S. K. Agrawal, M. Srivastava, S. Das, Nonlinear Dyn. 69, 2277 (2012)

    Article  MathSciNet  Google Scholar 

  34. R. Femat, G. Perales, Phys. Rev. E 65, 036226 (2002)

    Article  ADS  Google Scholar 

  35. M. Ho, Y. Hung, Z. Liua, I. Jiang, Phys. Lett. A 348, 251 (2006)

    Article  ADS  Google Scholar 

  36. S. Bowong, Phys. Lett. A 326, 102 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 15, 3022 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 17, 1908 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. S. A. Lazzouni, S. Bowong, F. M. M. Kakmeni, B. Cherki, Commun. Nonlinear Sci. Numer. Simulat. 12, 568 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. X. Wang, M. Wang, Physica A 387, 3751 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Genesio, A. Tesi, Automatica 28, 531 (1992)

    Article  MATH  Google Scholar 

  42. M. R. Faieghia, H. Delavari, Commun. Nonlinear Sci. Numer. Simulat. 17, 731 (2012)

    Article  ADS  Google Scholar 

  43. H.J. Haubold, A.M. Mathai, R.K. Saxena, Journal of Applied Mathematics 2011, 1, doi:10.1155/2011/298628

    Google Scholar 

  44. K. Diethelm, J. Ford, A. Freed, Numer. Algorithms 36, 31 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. K. Diethelm, J. Ford, Appl. Math. Comput. 154, 621 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Das.

About this article

Cite this article

Srivastava, M., Agrawal, S.K. & Das, S. Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems. centr.eur.j.phys. 11, 1504–1513 (2013). https://doi.org/10.2478/s11534-013-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0310-5

Keywords

Navigation