Skip to main content
Log in

Dynamics analysis of fractional order Yu-Wang system

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209–215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Alligood, T. D. Sauer, J. A. Yorke, Chaos: An Introduction to Dynamical Systems, (Springer, New York, 2008)

    Google Scholar 

  2. G. Chen, X. Dong, IEEE T. Circ. Syst. 40, 591 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Q. Zongmin, C. Jiaxing, “A Novel Linear Feedback Control Approach of Lorenz Chaotic System,” Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on, vol., no., pp.67, Nov. 28 2006–Dec. 1 2006.

    Google Scholar 

  4. E. Ott, C. Grebogi, J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J. Lu, S. Zhang, Phys. Lett. A 256, 148 (2001)

    Article  ADS  Google Scholar 

  6. E. N. Sanchez, J. P. Perez, M. Martinez, G. Chen, Latin Amer. Appl. Res: Int. J. 32, 111 (2002)

    Google Scholar 

  7. J. Lu, J. Xie, J. Lü, S. Chen, Appl. Math. Mech. 24, 1309 (2003)

    Article  MATH  Google Scholar 

  8. Y. J. Cao, Phys. Lett. A 270, 171 (2000)

    Article  ADS  Google Scholar 

  9. C. C. Fuh, P. C. Tung, Phys. Rev. Lett. 75, 2952 (1995)

    Article  ADS  Google Scholar 

  10. R. He, P. G. Vaidya, Phys. Rev. E 57(2), 1532 (1998)

    Article  ADS  Google Scholar 

  11. I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  12. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, (Gordon and Breach, Yverdon, 1993)

    MATH  Google Scholar 

  13. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  14. M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)

    Article  ADS  Google Scholar 

  15. F. Mainardi, Y. Luchko, G. Pagnini, Frac. Calc. Appl. Anal. 4(2), 153 (2001)

    MathSciNet  Google Scholar 

  16. O P. Agrawal, Nonlinear Dyn. 29, 145 (2002)

    Article  MATH  Google Scholar 

  17. H. G. Sun, W. Chen, Y. Q. Chen, Physica A 388, 4586 (2009)

    Article  ADS  Google Scholar 

  18. I. S. Jesus, J. A. T. Machado, Nonlinear Dyn. 54(3), 263 (2008)

    Article  Google Scholar 

  19. I. S. Jesus, J. A. T. Machado„ R. S. Barbosa, Comput. Math. Appl. 59(5), 1687 (2010)

    Article  MathSciNet  Google Scholar 

  20. J. Sabatier, S. Poullain, P. Latteux, J. Thomas, A. Oustaloup, Nonlinear Dyn. 38, 383 (2004)

    Article  MATH  Google Scholar 

  21. T. J. Anastasio, Biol. Cybernet. 72, 69 (1994)

    Article  Google Scholar 

  22. M. D. Ortigueira, J. A. T. Machado, Signal Processing 86, 2503 (2006)

    Article  MATH  Google Scholar 

  23. R. L. Magin, Fractional Calculus in Bioengineering, (Begll House Publishers, USA, 2006)

    Google Scholar 

  24. S. Bhalekar, V. Daftardar-Gejji, Commun. Nonlinear Sci. Numer. Simulat. 15(8), 2178 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Li, G. Peng, Chaos Soliton. Fract. 22, 443 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. C. Li, G. Chen, Phys. A: Stat. Mech. Appl. 341, 55 (2004)

    Article  Google Scholar 

  27. V. Daftardar-Gejji, S. Bhalekar, Comput. Math. Appl. 59(3), 1117 (2010)

    Article  MathSciNet  Google Scholar 

  28. S. Bhalekar, Int. J. Differential Equations 2012, Article ID 623234 (2012)

    Google Scholar 

  29. S. Bhalekar, V. Daftardar-Gejji, Commun. Nonlinear Sci. Numer. Simulat. 15, 3536 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. W. H. Deng, C. P. Li, Physica A 353, 61 (2005)

    Article  ADS  Google Scholar 

  31. T. Zhou, C. P. Li, Physica D 212, 111 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. J. Wang, X. Xionga, Y. Zhang, Physica A 370, 279 (2006)

    Article  ADS  Google Scholar 

  33. F. Yu, C. Wang, Engineering, Technology & Applied Science Research 2, 209 (2012)

    Google Scholar 

  34. D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application multiconference, IMACS, IEEE-SMC proceedings, Lille, France, July, Vol. 2; 1996. p. 963

    Google Scholar 

  35. M. S. Tavazoei, M. Haeri, Nonlinear Dyn. 54, 213 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. M. S. Tavazoei, M. Haeri, Phys. Lett. A 367, 102 (2007)

    Article  ADS  MATH  Google Scholar 

  37. M. S. Tavazoei, M. Haeri, Physica D 237, 2628 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. K. Diethelm, N. J. Ford, A. D. Freed, Nonlinear Dyn. 29, 3 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. K. Diethelm, Elec. Trans. Numer. Anal. 5, 1 (1997)

    MATH  MathSciNet  Google Scholar 

  40. K. Diethelm, N. J. Ford, J. Math. Anal. Appl. 265, 229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Kodba, M. Perc, M. Marhl, Eur. J. Phys. 26, 205 (2005)

    Article  Google Scholar 

  42. L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64(8), 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  43. L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 44, 2374 (1991)

    ADS  MathSciNet  Google Scholar 

  44. G. Chen, X. Dong, From Chaos to Order, (World Scientific, Singapore, 1998)

    MATH  Google Scholar 

  45. B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999)

    Article  ADS  Google Scholar 

  46. R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, USA, 2001)

    Google Scholar 

  47. S. H. Chen, J. Lü, Chaos Soliton. Fract. 14, 643 (2002)

    Article  ADS  MATH  Google Scholar 

  48. E. Bai, K. Lonngen, Phys. Rev. E 8, 51 (1997)

    MATH  Google Scholar 

  49. E. Ott, C. Grebogi, J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. C. K. Ahn, Prog. T. Phys. 123, 421 (2010)

    Article  ADS  MATH  Google Scholar 

  51. C. K. Ahn, S. T. Jung, S. K. Kang, S. C. Joo, Commun. Nonlinear Sci. Numer. Simulat. 15, 2168 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. J. Cao, H. X. Li, D. W.C. Ho, Chaos Soliton. Fract. 23, 1285 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  53. C. K. Ahn, Nonlinear Analysis: Hybrid Systems 4, 16 (2010)

    MATH  MathSciNet  Google Scholar 

  54. C. K. Ahn, Nonlinear Dyn. 59, 535 (2010)

    Article  MATH  Google Scholar 

  55. C. K. Ahn, Nonlinear Analysis: Hybrid Systems 9, 1 (2013)

    MathSciNet  Google Scholar 

  56. C. K. Ahn, Nonlinear Dyn. 60, 295 (2010)

    Article  MATH  Google Scholar 

  57. C. K. Ahn, Nonlinear Dyn. 59, 319 (2010)

    Article  MATH  Google Scholar 

  58. W. C. Chen, Chaos Soliton. Fract. 36, 1305 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Bhalekar.

About this article

Cite this article

Bhalekar, S. Dynamics analysis of fractional order Yu-Wang system. centr.eur.j.phys. 11, 1514–1522 (2013). https://doi.org/10.2478/s11534-013-0307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0307-0

Keywords

Navigation