Skip to main content
Log in

Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this paper we study a class of new Generalized Fractional Advection-Diffusion Equations (GFADEs) with a new Generalized Fractional Derivative (GFD) proposed last year. The new GFD is defined in the Caputo sense using a weight function and a scale function. The GFADE is discussed in a bounded domain, and numerical solutions for two examples consisting of a linear and a nonlinear GFADE are obtained using an implicit finite difference approach. The stability of the numerical scheme is investigated, and the order of convergence is estimated numerically. Numerical results illustrate that the finite difference scheme is simple and effective for solving the GFADEs. We investigate the influence of weight and scale functions on the diffusion of GFADEs. Linear and nonlinear stretching and contracting functions are considered. It is found that an increasing weight function increases the rate of diffusion, and a scale function can stretch or contract the diffusion on the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Beinum, J. Meeussen, A. Edwards, W. Riemsdijk, Water Res. 34, 2043 (2000)

    Article  Google Scholar 

  2. T. L. Bocksell, E. Loth, Int. J. Multiphas. Flow 32, 1234 (2006)

    Article  MATH  Google Scholar 

  3. J. Ferreira, M. Costa, J. Hydraul. Eng. 128, 399 (2002)

    Article  Google Scholar 

  4. N. Kumar, J. Hydrol. 63, 345 (1988)

    Article  Google Scholar 

  5. C. Pirmez, L. F. Pratson, M. S. Steckler, J. Geophys. Res. 103, 141 (1998)

    Google Scholar 

  6. A. Rasmuson, T. N. Narasimhan, I. Neretnieks, Water Resour. Res. 18, 1479 (1982)

    Article  ADS  Google Scholar 

  7. P. C. Chatwin, C. M. Allen, Ann. Rev. Fluid Mech. 17, 119 (1985)

    Article  ADS  Google Scholar 

  8. A. Kiselev, L. Ryzhik, Commun. Part. Diff. Eq. 37, 298 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. X. F. Chen, R. Hambrock, Y. Lou, J. Math. Bio. 57, 361 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Gafiychuk, B. Datsko, V. Meleshko, J. Comput. Appl. Math. 220, 215 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. Gafiychuk, B. Datsko, V. Meleshko, D. Bkackmore, Chaos, Solitons, Fractals 41, 1905 (2009)

    Article  Google Scholar 

  12. E. Sousa, J. Comput. Phy. 228, 4038 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. U. M. Ascher, Numerical Methods for Evolutionary Differential Equations, (SIAM Computational Science and Engineering, USA, 2008)

    Book  MATH  Google Scholar 

  14. W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  15. Y. Xu, Z. He, Comput. Math. Appl. 62, 4796 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. S. Dhawan, S. Kapoor, S. Kumar, J. Comput. Sci. 3, 429 (2012)

    Article  Google Scholar 

  18. M. Danesh, M. Safari, Advance. Pure Math. 1, 345 (2011)

    Article  MATH  Google Scholar 

  19. X. L. Ding, Y. L. Jiang, Nonlinear Anal. RWA. 14, 1026 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. B. W. Philippa, R. D. White, R. E. Robson, Phys. Rev. E. 84, 041138–1 (2011)

    Article  ADS  Google Scholar 

  21. Y. Y. Zheng, C. P. Li, Z. G. Zhao, Comput. Math. Appl. 59, 1718 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Diethelm, The Analysis of Fractional Differential Equations, (Springer-Verlag, Berlin Heidelberg, 2010)

    Book  MATH  Google Scholar 

  23. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier Science B. V., Amsterdam, 2006)

    MATH  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  25. O.P. Agrawal, Fract. Calc. Anal. Appl. 15, 700 (2012)

    Google Scholar 

  26. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 191, 12 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Huang, F. Liu, ANZIAM J. 46, 317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Jiang, F. Liu, I. Turner, K. Burrage, J. Math. Anal. Appl. 389, 1117 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. O.P. Agrawal, Int. J. Diff. Equa. 2012, 1 (2012)

    Google Scholar 

  31. Y. Xu, O.P. Agrawal, Fract. Calc. Appl. Anal. 16, 709 (2013)

    MathSciNet  Google Scholar 

  32. A. Mohebbi, M. Dehghan, Appl. Math. Modelling, 34, 3071 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. F. Prieto, J. Muñoz, L. Corvinos, J. Comput. Appl. Math. 235, 1849 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Hidalgo, M. Dumbser, J. Sci. Comput. 48, 173 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Agrawal.

About this article

Cite this article

Xu, Y., Agrawal, O.P. Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations. centr.eur.j.phys. 11, 1178–1193 (2013). https://doi.org/10.2478/s11534-013-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0295-0

Keywords

Navigation