Skip to main content
Log in

RLC electrical circuit of non-integer order

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this work a fractional differential equation for the electrical RLC circuit is studied. The order of the derivative being considered is 0 < γ ≤ 1. To keep the dimensionality of the physical quantities R, L and C an auxiliary parameter γ is introduced. This parameter characterizes the existence of fractional components in the system. It is shown that there is a relation between and σ through the physical parameters RLC of the circuit. Due to this relation, the analytical solution is given in terms of the Mittag-Leffler function depending on the order of the fractional differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  2. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  3. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach Science Publishers, Langhorne, 1993)

    MATH  Google Scholar 

  4. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  5. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012)

    Google Scholar 

  6. W. Wyss, J. Math. Phys. 27, 2782 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. R. Hilfer, J. Phys. Chem. B 104, 3914 (2000)

    Article  Google Scholar 

  8. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. R. Metzler, J. Klafter, J. Phys. A 37, R161 (2004)

  10. O.P. Agrawal, J.A. Tenreiro-Machado, I. Sabatier, Fractional Derivatives and Their Applications: Nonlinear Dynamics (Springer-Verlag, Berlin, 2004)

    Google Scholar 

  11. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  12. B.J. West, M. Bologna, P. Grigolini, Physics of Fractional Operators (Springer-Verlag, Berlin, 2003)

    Book  Google Scholar 

  13. F. Gómez-Aguilar, J. Rosales-García, M. Guía-Calderón, J. Bernal-Alvarado, UNAM. XIII, 3 (2012)

    Google Scholar 

  14. J.J. Rosales, M. Guía, J.F. Gómez, V.I. Tkach, Discontinuity, Nonlinearity and Complexity 4, 325 (2012)

    Google Scholar 

  15. F. Gómez, J. Bernal, J. Rosales, T. Córdova, Journal of Electrical Bioimpedance 3, 2 (2012)

    Google Scholar 

  16. R.L. Magin, Fractional calculus in Bioengineering (Begell House Publisher, Roddin, 2006)

    Google Scholar 

  17. M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)

    Article  ADS  Google Scholar 

  18. S. Westerlund, Causality, University of Kalmar, Rep. No. 940426 (1994)

    Google Scholar 

  19. D. Baleanu, Z.B. Günvenc, J.A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications (Springer, London, 2010)

    Book  MATH  Google Scholar 

  20. F. Riewe. Phys. Rev. E 53, 4098 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. A.E. Herzallah Mohamed, I. Muslih Sami, D. Baleanu, M. Rabei Eqab, Nonlinear Dynam. 66, 4 (2011)

    Google Scholar 

  22. K. Golmankhaneh Alireza, M. Yengejeh Ali, D. Baleanu, Int. J. Theor Phys. 51, 9 (2012)

    Google Scholar 

  23. K. Golmankhaneh Alireza, L. Lambert, Investigations in Dynamics: With Focus on Fractional Dynamics (Academic Publishing, Germany, 2012)

    Google Scholar 

  24. I. Muslih Sami, M. Saddallah, D. Baleanu, E. Rabei, Romanian Journal of Physics. 55, 7 (2010)

    Google Scholar 

  25. D. Baleanu, I. Muslih Sami, M. Rabei Eqab, Nonlinear Dynam. 53, 1 (2008)

    Article  MathSciNet  Google Scholar 

  26. V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, London, 2013)

    Book  MATH  Google Scholar 

  27. B. Mandelbrot. The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1982)

    MATH  Google Scholar 

  28. A.E. Herzallah Mohamed, D. Baleanu, Computers Mathematics with Applications 64, 10 (2012)

    Google Scholar 

  29. S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, Computers Mathematics with Applications 64, 10, (2012)

    Google Scholar 

  30. A. Razminia, D. Baleanu, Proceeding of the Romanian Academy Series A-Mathematics Physics Technical Sciences 13, 4 (2012)

    MathSciNet  Google Scholar 

  31. I. Petrás, I. Podlubny, P. O’Leary, L. Dorcák, B.M. Vinagre, Analoge Realization of Fractional-Order Controllers, Tu Kosice: BERG, Faculty, Slovakia, (2002)

    Google Scholar 

  32. I. Petrás, IEEE Transactions on Circuits and Systems-II: Express Briefs 57, 12 (2010)

    Google Scholar 

  33. I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer and Beijing: HEP, London, 2011)

    Book  Google Scholar 

  34. A.A. Rousan et al., Fract. Calc. App. Anal. 9, 1 (2006)

    MathSciNet  Google Scholar 

  35. A. Obeidat, M. Gharibeh, M. Al-Ali, A. Rousan, Fract. Calc. App. Anal. 14, 2 (2011)

    Google Scholar 

  36. J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, 348 (2012)

    Google Scholar 

  37. Ya.E. Ryabov, A. Puzenko, Phys. Rev. B 66, 184201 (2002)

    Article  ADS  Google Scholar 

  38. A.A. Stanislavsky, Acta Physica Polonica B 37, 319 (2006)

    ADS  Google Scholar 

  39. I. Podlubny, Fract. Calc. App. Anal. 5, 4 (2002)

    MathSciNet  Google Scholar 

  40. M. Moshre-Torbati, J.K. Hammond, J. Franklin Inst. 335B, 6 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gómez.

About this article

Cite this article

Gómez, F., Rosales, J. & Guía, M. RLC electrical circuit of non-integer order. centr.eur.j.phys. 11, 1361–1365 (2013). https://doi.org/10.2478/s11534-013-0265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0265-6

Keywords

Navigation