Skip to main content
Log in

On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence

  • Review Article
  • Published:
Central European Journal of Physics

Abstract

In this paper we consider a family of 3m-indices generalizations of the classical Mittag-Leffler function, called multi-index (3m-parametric) Mittag-Leffler functions. We survey the basic properties of these entire functions, find their order and type, and new representations by means of Mellin-Barnes type contour integrals, Wright p Ψ q -functions and Fox H-functions, asymptotic estimates. Formulas for integer and fractional order integration and differentiations are found, and these are extended also for the operators of the generalized fractional calculus (multiple Erdélyi-Kober operators). Some interesting particular cases of the multi-index Mittag-Leffler functions are discussed. The convergence of series of such type functions in the complex plane is considered, and analogues of the Cauchy-Hadamard, Abel, Tauber and Littlewood theorems are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Erdélyi et al. (Ed-s), Higher Transcendental Functions, Vols. 1–3, 1st edition (McGraw-Hill, New York-Toronto-London, 1953–1955)

    Google Scholar 

  2. M. M. Dzrbashjan, Integral Transforms and Representations in the Complex Domain, 1st edition (Nauka, Moscow, 1966) (in Russian)

    Google Scholar 

  3. I. Podlubny, Fractional Differential Equations, 1st edition (Acad. Press., Boston etc., 1999)

    MATH  Google Scholar 

  4. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 1st edition (Elsevier, Amsterdam etc., 2006)

    MATH  Google Scholar 

  5. A. M. Mathai, H. J. Haubold, Special Functions for Applied Scientists, 1st edition (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 1st edition (Imperial College Press & World Sci., London — Singapore, 2010)

    Book  Google Scholar 

  7. V. Kiryakova, J. Comput. Appl. Math. 118, 241 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. V. Kiryakova, Comput. Math. Appl. 59, 1885 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Kiryakova, Comput. Math. Appl. 59, 1128 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. R. Nigmatullin, D. Baleanu, Fract. Calc. Appl. Anal. 15, 718 (2012)

    MathSciNet  Google Scholar 

  11. R. Gorenflo, F. Mainardi, J. Comput. Appl. Math. 118, 283 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. V. Kiryakova, In: AIP Conf. Proc. 1410 (AMEE’2011), 247 (2011)

    Google Scholar 

  13. M. A. E. Herzallah, D. Baleanu, Comput. Math. Appl. 64, 3059 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. M. Mathai, H. J. Haubold, Fract. Calc. Appl. Anal. 14, 138 (2011)

    MATH  MathSciNet  Google Scholar 

  15. T. R. Prabhakar, Yokohama. Math. J. 19, 7 (1971)

    MATH  MathSciNet  Google Scholar 

  16. A. A. Kilbas, M. Saigo, R. K. Saxena, Integral Transforms Spec. Func. 15, 31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Sandev, R. Metzler, Z. Tomovski, Fract. Calc. Appl. Anal. 15 426 (2012)

    MATH  MathSciNet  Google Scholar 

  18. S. Yakubovich, Yu. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, 1st edition (Kluwer Acad. Publ., Dordrecht — Boston — London, 1994)

    Book  MATH  Google Scholar 

  19. Yu. Luchko, Fract. Calc. Appl. Anal. 2, 463 (1999)

    MATH  MathSciNet  Google Scholar 

  20. V. Kiryakova, Fract. Calc. Appl. Anal. 2, 445 (1999)

    MATH  MathSciNet  Google Scholar 

  21. V. Kiryakova, Yu. Luchko, In: American Institute of Physics — Conf. Proc. 1301 (AMiTaNS’10), 597 (2010)

    ADS  MathSciNet  Google Scholar 

  22. A. A. Kilbas, A. A. Koroleva, S. V. Rogosin, Fract. Calc. Appl. Anal. 16, 378 (2013)

    MathSciNet  Google Scholar 

  23. J. Paneva-Konovska, C. R. Acad. Bulg. Sci. 61, 9 (2008)

    MATH  MathSciNet  Google Scholar 

  24. J. Paneva-Konovska, Fract. Calc. Appl. Anal. 10, 59 (2007)

    MATH  MathSciNet  Google Scholar 

  25. J. Paneva-Konovska, C. R. Acad. Bulg. Sci. 62, 75 (2009)

    MathSciNet  Google Scholar 

  26. J. Paneva-Konovska, C. R. Acad. Bulg. Sci. 63, 815 (2010)

    MATH  MathSciNet  Google Scholar 

  27. J. Paneva-Konovska, Integral Transforms Spec. Funct. 23, 207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Paneva-Konovska, C. R. Acad. Bulg. Sci. 64, 1089 (2011)

    MATH  MathSciNet  Google Scholar 

  29. T. Sandev, Ž. Tomovski, J. Dubbeldam, Physica A 390, 3627 (2011)

    Article  ADS  Google Scholar 

  30. J. Paneva-Konovska, Math. Balkanica (N.S.) 26, 203 (2012)

    MATH  MathSciNet  Google Scholar 

  31. J. Paneva-Konovska, Math. Slovaca (Accepted 12.01.2012)

  32. V. Kiryakova, Generalized Fractional Calculus and Applications, 1st edition (Longman & J. Wiley, Harlow — N. York, 1994)

    MATH  Google Scholar 

  33. A. A. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series. More Special Functions, 1st edition (Gordon & Breach Sci. Publ., N. York etc., 1990)

    Google Scholar 

  34. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. 3rd edition (Chelsea Publ., New York, 1986) (the first edition Oxford Univ. Press, Oxford, 1937)

    Google Scholar 

  35. Yu. Luchko, R. Gorenflo, Fract. Calc. Appl. Anal. 1, 63 (1998)

    MATH  MathSciNet  Google Scholar 

  36. M. M. Dzrbashjan, Izv. AN Arm. SSR 13, No 3, 21 (1960) (in Russian)

    Google Scholar 

  37. E. M. Wright, J. London Math. Soc. 8, 71 (1933)

    Article  Google Scholar 

  38. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives. Theory and Applications, 1st edition (Gordon and Breach, N. York — London, 1993)

    MATH  Google Scholar 

  39. G. Pagnini, Fract. Calc. Appl. Anal. 15, 117 (2012)

    MATH  MathSciNet  Google Scholar 

  40. P. Rusev, Classical Orthogonal Polynomials and Their Associated Functions in Complex Domain, 1st edition (Publ. House Bulg. Acad. Sci., Sofia, 2005)

    MATH  Google Scholar 

  41. J. Paneva-Konovska, Adv. Math. Sci. J. 1, 73 (2012)

    Google Scholar 

  42. G. Hardy, Divergent Series, 1st edition (Oxford University Press, Oxford, 1949)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordanka Paneva-Konovska.

About this article

Cite this article

Paneva-Konovska, J. On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence. centr.eur.j.phys. 11, 1164–1177 (2013). https://doi.org/10.2478/s11534-013-0263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0263-8

Keywords

Navigation