Skip to main content
Log in

Analysis on the time and frequency domain for the RC electric circuit of fractional order

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

This paper provides an analysis in the time and frequency domain of an RC electrical circuit described by a fractional differential equation of the order 0 < α≤ 1. We use the Laplace transform of the fractional derivative in the Caputo sense. In the time domain we emphasize on the delay, rise and settling times, while in the frequency domain the interest is in the cutoff frequency, the bandwidth and the asymptotes in low and high frequencies. All these quantities depend on the order of differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    Google Scholar 

  2. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (PA: Gordon and Breach Science Publishers, Langhorne, 1993)

    MATH  Google Scholar 

  3. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  4. D. Baleanu, Fractional Calculus Models and Numerical Methods (World Scientific Publishing Company, 2012)

    MATH  Google Scholar 

  5. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls, Series: Advances in Industrial Control (Springer, 2010)

    Book  Google Scholar 

  6. R. Caponetto, G. Dongola, L. Fortuna, I. Petrás, Fractional Order Systems: Modeling and Control Applications (World Scientific, Singapore, 2010)

    Google Scholar 

  7. D. Baleanu, Z.B. Günvenc, J.A. Tenreiro Machado (Eds), New Trends in Nanotechnology and Fractional Calculus Applications (Springer, 2010)

    MATH  Google Scholar 

  8. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)

    Google Scholar 

  9. D. Baleanu, K. Golmankhaneh Alireza, K. Golmankhaneh Ali, R.R. Nigmatullin, Nonlinear Dyn. 60, 1 (2010)

    Article  Google Scholar 

  10. W. Wyss, J. Math. Phys. 27, 2782 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. R. Hilfer, J. Phys. Chem B. 104, 3914 (2000)

    Article  Google Scholar 

  12. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. R. Metzler, J. Klafter, J. Phys. A Math. Gen. 37, 161 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. O.P. Agrawal, J.A. Tenreiro-Machado, I. Sabatier (Eds.), Fractional Derivatives and Their Applications: Nonlinear Dynamics 38 (Springer-Verlag, Berlin, 2004)

    Google Scholar 

  15. R. Hilfer. (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  16. B.J. West, M. Bologna, P. Grigolini, Physics of Fractional Operators (Springer-Verlag, Berlin 2003)

    Book  Google Scholar 

  17. R.L. Magin, Fractional calculus in Bioengineering (Roddin: Begell House Publisher, 2006)

    Google Scholar 

  18. M. Caputo, F. Mainardi, Pure and App. Geo. 91, 134 (1971)

    Article  ADS  Google Scholar 

  19. S. Westerlund, Causality, Rep. No. 940426 (University of Kalmar, 1994)

    Google Scholar 

  20. F. Riewe, Phys. Rev. E 53,1890 (1996)

  21. A.E. Herzallah Mohamed, I. Muslih Sami, D. Baleanu, M. Rabei Eqab, Nonlinear Dyn. 66, 4 (2011)

    Google Scholar 

  22. K. Golmankhaneh Alireza, M. Yengejeh Ali, D. Baleanu, Int. J. Theor. Phys. 51, 9 (2012)

    Google Scholar 

  23. K. Golmankhaneh Alireza, L. Lambert, Investigations in Dynamics: With Focus on Fractional Dynamics (Academic Publishing, 2012)

    Google Scholar 

  24. I. Muslih Sami, M. Saddallah, D. Baleanu, E. Rabei, Romanian J. Phys. 55, 7 (2010)

    Google Scholar 

  25. D. Baleanu, I. Muslih Sami, M. Rabei Eqab, Nonlinear Dyn. 53, 1 (2008)

    Article  Google Scholar 

  26. V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, 2013)

    Book  MATH  Google Scholar 

  27. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco CA, 1982)

    MATH  Google Scholar 

  28. K. Alireza, F. Golmankhaneh Vanideh, D. Baleanu, Romanian Rep. Phys. 65, 1 (2013)

    Google Scholar 

  29. I. Petrás, I. Podlubny, P. O’Leary, L. Dorcák, B.M. Vinagre, Analoge Realization of Fractional-Order Controllers, (Tu BERG, Faculty, Kosice, Slovakia, 2002)

    Google Scholar 

  30. I. Petrás, IEEE T. Circuits Syst.-II 57, 12 (2010)

    Google Scholar 

  31. I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, London and HEP, Beijing, 2011)

    Book  Google Scholar 

  32. A.A. Rousan, N.Y. Ayoub, F.Y. Alzoubi, H. Khateeb, M. Al-Qadi, M.K. Hasan (Quasser), B.A. Albiss, Fract. Calc. App. Anal. 9, 1 (2006)

    Google Scholar 

  33. A. Obeidat, M. Gharibeh, M. Al-Ali, A. Rousan, Fract. Calc. App. Anal. 14, 2 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manule Guía.

About this article

Cite this article

Guía, M., Gómez, F. & Rosales, J. Analysis on the time and frequency domain for the RC electric circuit of fractional order. centr.eur.j.phys. 11, 1366–1371 (2013). https://doi.org/10.2478/s11534-013-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0236-y

Keywords

Navigation