Skip to main content
Log in

A fractional approach to the Sturm-Liouville problem

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The objective of this paper is to show an approach to the fractional version of the Sturm-Liouville problem, by using different fractional operators that return to the ordinary operator for integer order. For each fractional operator we study some of the basic properties of the Sturm-Liouville theory. We analyze a particular example that evidences the applicability of the fractional Sturm-Liouville theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Boyce, R.C. DiPrima, Elementary differential equations and boundary value problems (John Wiley and Sons, USA, 2005)

    Google Scholar 

  2. R.V. Churchill, J.W. Brown, Fourier series and boundary value problems (McGraw-Hill, New York, 1993)

    Google Scholar 

  3. E.A. Coddington, R. Carlson, Linear ordinary differential equations (Siam, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  4. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, In: Series on Complexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012)

    Google Scholar 

  5. R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Connecticut, 2006)

    Google Scholar 

  6. F. Mainardi, Fractional Calculus and waves in linear viscoelasticity: An introduction to mathematical models (Imperial College Press, London, 2010)

    Book  Google Scholar 

  7. J. Sabatier, O.P. Agrawal, J.A. Tenreiro (Eds.), Advances in fractional calculus: Theoretical developments and applications in physics and engineering (Springer, Netherlands 2007)

    Google Scholar 

  8. J. Tenreiro, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. 16, 1140 (2011)

    Article  MATH  Google Scholar 

  9. D. Baleanu, Signal Process. 86, 2632 (2006)

    Article  MATH  Google Scholar 

  10. D. Baleanu, Commun. Nonlinear Sci. 14, 2520 (2009)

    Article  Google Scholar 

  11. H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012)

    Article  Google Scholar 

  12. D. Baleanu, O.G. Mustafa, R.P. Agarwal, J. Phys. A — Math. Theor. 43, 385209 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Abbasbandy, A. Shizardi, Numer. Algorithms 54, 521 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Q.M. Al-Mdallal, Chaos Soliton. Fract. 40, 138 (2009)

    Article  MathSciNet  Google Scholar 

  15. M.M. Djrbashian, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5, 71 (1970)

    MathSciNet  Google Scholar 

  16. M. D’Ovidio, Stoch. Proc. Appl. 122, 3513 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. V.S. Erturk, Math. Comput. Appl. 16, 712 (2011)

    MathSciNet  Google Scholar 

  18. A.K. Golmankhaneh, T. Khatuni, N.A. Porghoveh, D. Baleanu, Cent. Eur. J. Phys. 10, 966 (2012)

    Article  Google Scholar 

  19. B. Jin, W. Rundell, J. Comput. Phys. 231, 4954 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Y. Liu, T. He, H. Shi, U.P.B. Sci. Bull. 74, 93 (2012)

    MATH  MathSciNet  Google Scholar 

  21. A.M. Nahusev, Dokl. Akad. Nauk SSSR, 234, 308 (1977)

    MathSciNet  Google Scholar 

  22. M. Klimek, On solutions of linear fractional differential equations of a variational type (Layout, Czestochowa, 2009)

    Google Scholar 

  23. M. Klimek, O.P. Agrawal, On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1), in: I. Petrás, I. Podlubny, K. Kostúr, Ján Kacur, A. Mojzisová (Eds.), Proceedings of the 13th International Carpathian Control Conference, May. 28–31, 2012, Vysoke Tatry, Slovakia (IEEE Explore Digital Library, 2012)

  24. K. Diethelm, The analysis of fractional differential equations (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  25. A.A. Kilbas, H.M. Srivastava, J.J Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  26. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley and Sons, New York, 1993)

    MATH  Google Scholar 

  27. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)

    Google Scholar 

  28. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  29. G.M. Zaslavsky, D. Baleanu, J.A. Tenreiro (Eds.), Fractional Differentiation and its Applications (Physica Scripta, 2009)

    Google Scholar 

  30. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Switzerland, 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Velasco.

About this article

Cite this article

Rivero, M., Trujillo, J.J. & Velasco, M.P. A fractional approach to the Sturm-Liouville problem. centr.eur.j.phys. 11, 1246–1254 (2013). https://doi.org/10.2478/s11534-013-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0216-2

Keywords

Navigation