Central European Journal of Physics

, Volume 11, Issue 2, pp 245–250 | Cite as

Raman studies of Pd-C nanocomposites

  • Radoslaw Belka
  • Malgorzata Suchanska
  • Elzbieta Czerwosz
  • Justyna Keczkowska
Research Article

Abstract

The results of studying palladium-carbon (Pd-C) nanocomposites using Raman spectroscopy are presented. This method has been used for studying samples having various palladium content, prepared by a one-step Physical Vapour Deposition (PVD) process and a Chemical Vapour Deposition (two-step PVD/CVD) process using different process parameters. For samples obtained by PVD, the vibration bands characteristic of C60 fullerene molecules were observed in the spectra, whereas for layers obtained by PVD/CVD, the Raman spectra displayed mainly D and G bands characteristic solely of the prescence of graphite-like layers’ vibrations. The analysis of the obtained Raman spectra reveals that its shape is affected by many parameters including type of substrate, temperature, and the percentage content of Pd in the studied layer. The quantitative analysis of spectra for layers obtained using the PVD/CVD process shows a difference in the relative intensity of bands D and G, reflecting the different degrees of amorphisation in the investigated nanocomposites.

Keywords

Pd-C nanostructures fullerene Raman spectroscopy PVD/CVD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Grochala, P. P. Edwards, Chem. Rev. 104, 1283 (2004)CrossRefGoogle Scholar
  2. [2]
    R. Pitts et al., Proc. of the 2001 DOE Hydrogen Program Review (2001)Google Scholar
  3. [3]
    E. A. Evard et al., Mater Sci+ 36, 499 (2000)CrossRefGoogle Scholar
  4. [4]
    B. Panella, M. I. Hirscher, S. Roth, Carbon 43, 2209 (2005)CrossRefGoogle Scholar
  5. [5]
    M. I, Hischer et al., J. Alloy. Compd. 356–357, 433 (2003)CrossRefGoogle Scholar
  6. [6]
    E. Czerwosz et al. Nato Science Peace S, 227 (2009)Google Scholar
  7. [7]
    E. Czerwosz et al., Vacuum 82, 372 (2007)CrossRefGoogle Scholar
  8. [8]
    E. Czerwosz et al., Proc. of SPIE 7502, 50223 (2009)Google Scholar
  9. [9]
    E. Czerwosz et al., Mater. Sci+ 26, 119 (2008)Google Scholar
  10. [10]
    I. Pavlovsky et al., Sensors & Transducers Journal 73, 793 (2006)Google Scholar
  11. [11]
    E. Kowalska et al., Elektronika 7, 61 (2011)Google Scholar
  12. [12]
    F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53, 1126 (1970)ADSCrossRefGoogle Scholar
  13. [13]
    A. C. Ferrari, J. Robertson, Phys. Rev. B 61, 14096 (2000)ADSCrossRefGoogle Scholar
  14. [14]
    D. D. L. Chung, J. Mater. Sci. 37, 1475 (2002)ADSCrossRefGoogle Scholar
  15. [15]
    H. Kuzmany et al., Phil. Trans. R. Soc. Lond. A 362, 2375 (2004)ADSCrossRefGoogle Scholar
  16. [16]
    M. S. Dresselhaus et al., J. Raman Spectrosc. 27, 351 (1996)ADSCrossRefGoogle Scholar
  17. [17]
    K. L. Lo, M. C. Lee, Chinese J. Phys. 31, 653 (1993)ADSGoogle Scholar
  18. [18]
    V. N. Ivanova, J. Struct. Chem. 41, 135 (2000)MathSciNetCrossRefGoogle Scholar
  19. [19]
    A. L. Balch, M. M. Olmstead, Chem. Rev. 98, 2123 (1998)CrossRefGoogle Scholar
  20. [20]
    P. J. Fagan, J. C. Calabrese, B. Malone, Science 252, 1160 (1991)ADSGoogle Scholar
  21. [21]
    C. Bo, M. Costas, J. M. Poblet, J. Phys. Chem. 99, 5914 (1995)CrossRefGoogle Scholar
  22. [22]
    H. Nagashima et al., J. Chem. Soc. Chem. Comm. 142, 377 (1992)CrossRefGoogle Scholar
  23. [23]
    K. Winkler et al., J. Solid State Electr. 10, 761 (2006)CrossRefGoogle Scholar
  24. [24]
    E. G. Lewars, Computational Chemistry (Springer. 1st ed., 2003)Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Radoslaw Belka
    • 1
  • Malgorzata Suchanska
    • 1
  • Elzbieta Czerwosz
    • 2
  • Justyna Keczkowska
    • 1
  1. 1.Kielce University of TechnologyKielcePoland
  2. 2.Tele & Radio Research InstituteWarsawPoland

Personalised recommendations