Advertisement

Central European Journal of Physics

, Volume 10, Issue 4, pp 926–935 | Cite as

Spring-block approach for crack patterns in glass

  • Emőke-Ágnes Horvát
  • Ferenc Járai-Szabó
  • Yves Brechet
  • Zoltán NédaEmail author
Research Article

Abstract

Fracture patterns resulting from point-like impact acting perpendicularly on the plane of a commercial sodalime glass plate is modelled by a spring-block system. The characteristic patterns consist of crack lines that are spreading radially from the impact point and concentric arcs intersecting these radial lines. Experimental results suggest that the number of radial crack lines is scaling linearly with the energy dissipated during the crack formation process. The elaborated spring-block model reproduces with success the observed fracture patterns and scaling law.

Keywords

brittle fracture pattern selection spring-block models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Le Bourhis, Glass: Mechanics and Tehnology (Wiley-VCH Verlag GmbH @ KGaA, Weinheim, 2008)Google Scholar
  2. [2]
    S. F. Pugh, Br. J. Appl. Phys. 18, 129 (1967)MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Y. Brechet et. al, private communication, student research projectGoogle Scholar
  4. [4]
    H. J. Hermann, S. Roux, Statistical Models for the Fracture of Disordered Media, (North-Holland, Amsterdam, 1990)Google Scholar
  5. [5]
    T. L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, second edition, 1995)zbMATHGoogle Scholar
  6. [6]
    T. Nishioka, Int. J. Fract. 86, 127 (1997)CrossRefGoogle Scholar
  7. [7]
    J. A. Astrom, Advances in Physics 55, 247 (2006)ADSCrossRefGoogle Scholar
  8. [8]
    H. J. Herrmann, F. K. Wittel, F. Kun, Physica A 371, 59 (2006)ADSCrossRefGoogle Scholar
  9. [9]
    A. Levandovsky, A. C. Balazs, Phys. Rev. E 75, 056105 (2007)ADSCrossRefGoogle Scholar
  10. [10]
    J. F. O’Brien, J. K. Hodgins, Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH’99) 137 (1999)Google Scholar
  11. [11]
    J. E. Field, Contemp. Phys. 12, 1 (1971)ADSCrossRefGoogle Scholar
  12. [12]
    G. I. Kanel, A. M. Molodets, A. N. Dremin, Combust., Explos. Shock Waves 13, 772 (1977)CrossRefGoogle Scholar
  13. [13]
    Z. Rosenberg, D. Yaziv, S. J. Bless, J. Appl. Phys 58, 3249 (1985)ADSCrossRefGoogle Scholar
  14. [14]
    N. S. Brar, S. J. Bless, Z. Rosenberg, Appl. Phys. Lett 59, 3396 (1991)ADSCrossRefGoogle Scholar
  15. [15]
    H. D. Espinosa, Y. Xu, N. S. Brar, J. Am. Ceram. Soc 80, 2074 (1997)Google Scholar
  16. [16]
    T. Kadono, M. Arakawa, Phys. Rev. E 65, 035107(R) (2002)ADSCrossRefGoogle Scholar
  17. [17]
    T. Kadono, M. Arakawa, N. K. Mitani, Phys. Rev. E 72, 045106(R) (2005)ADSCrossRefGoogle Scholar
  18. [18]
    J-P. Guin, S. M. Wiederhorn, Phys. Rev. Lett 92, 215502 (2004)ADSCrossRefGoogle Scholar
  19. [19]
    A. Momber, J. Mater. Sci. 46, 4494 (2011)ADSCrossRefGoogle Scholar
  20. [20]
    D. E. Grady, Int. J. of Impact Engineering 38, 446 (2011)CrossRefGoogle Scholar
  21. [21]
    F. Auerbach F, Ann. Phys. Chem. XLIII, 61 (1891)Google Scholar
  22. [22]
    T. Ishii, M. Matsushita J. Phys. Soc. Jap. 61, 3474 (1992)ADSCrossRefGoogle Scholar
  23. [23]
    Z. Neda, A. Mocsy, B. Bako, Mat. Sci. Eng. A 169, L1–L4 (1993)CrossRefGoogle Scholar
  24. [24]
    Y. Brechet, Z. Neda, Europhys. Lett. 32, 475 (1995)ADSCrossRefGoogle Scholar
  25. [25]
    M. Ausloos, Solid State Commun. 59, 401 (1986)ADSCrossRefGoogle Scholar
  26. [26]
    M. Ausloos, J.M. Kowalski, Phys. Rev. B 45, 12 830 (1992)CrossRefGoogle Scholar
  27. [27]
    R. D’hulst, N. Vandewalle and M. Ausloos, Phys. Rev. E 55, 189 (1997)ADSCrossRefGoogle Scholar
  28. [28]
    T.P. Swiler, J.H. Simmons, A.C. Wright, J. Non-Crist. Solids 182, 68 (1995).ADSCrossRefGoogle Scholar
  29. [29]
    R. Burridge, L. Knopoff, Bull. Seism. Soc. Am 57, 341 (1961)Google Scholar
  30. [30]
    B. Gutenberg, C.F. Richter, Ann. Geofis. 9, 1 (1956)Google Scholar
  31. [31]
    Z. Olami, J.S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992)ADSCrossRefGoogle Scholar
  32. [32]
    M. A. Lebyodkin, Y. Brechet, Y. Estrin, L.P. Kubin, Phys. Rev. Lett. 74, 4758 (1995)ADSCrossRefGoogle Scholar
  33. [33]
    K. Kovacs, Y. Brechet, Z. Neda Z, Mod. Sim. Mat. Sci. Eng. 13, 1341 (2005)ADSCrossRefGoogle Scholar
  34. [34]
    F. Jarai-Szabo, B. Sandor, Z. Neda, Centr. Eur. J. Phys. 9, 1002 (2011)ADSCrossRefGoogle Scholar
  35. [35]
    F. Jarai-Szabo, S. Astilean, Z. Neda, Chem. Phys. Lett. 408, 241 (2005)ADSCrossRefGoogle Scholar
  36. [36]
    F. Jarai-Szabo, E-A Horvat, R. Vajtai, Z. Neda, Chem. Phys. Lett. 511, 378 (2011)ADSCrossRefGoogle Scholar
  37. [37]
    J. V. Andersen, Y. Brechet, H.J. Jensen, Europhys. Lett. 26, 13 (1994)ADSCrossRefGoogle Scholar
  38. [38]
    K. T. Leung, Z. Neda, Phys. Rev. Lett. 85, 662 (2000)ADSCrossRefGoogle Scholar
  39. [39]
    K. T. Leung, Z. Neda, Phys. Rev. E 82, 046118 (2010)ADSCrossRefGoogle Scholar
  40. [40]
    K. T. Leung, L. Jozsa, M. Ravasz, Z. Neda, Nature 410, 166 (2001)ADSCrossRefGoogle Scholar
  41. [41]
    Z. Neda, K.T. Leung, J. Jozsa, M. Ravasz, Phys. Rev. Lett. 88, 095502 (2002)ADSCrossRefGoogle Scholar
  42. [42]
    W. A. Curtin, H. Scher, J. Mater. Res. 5, 535 (1990)ADSCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Emőke-Ágnes Horvát
    • 1
  • Ferenc Járai-Szabó
    • 2
  • Yves Brechet
    • 3
  • Zoltán Néda
    • 2
    Email author
  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Theoretical and Computational PhysicsBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Grenoble Institute of TechnologyENSIMAGGrenobleFrance

Personalised recommendations