Central European Journal of Physics

, Volume 10, Issue 2, pp 282–319 | Cite as

Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition

Review Article
  • 782 Downloads

Abstract

We present a step by step introduction to the notion of time-delay in classical and quantum mechanics, with the aim of clarifying its foundation at a conceptual level. In doing so, we motivate the introduction of the concepts of “fuzzy” and “free-flight” sojourn times that we use to provide the most general possible definition for the quantum time-delay, valid for simple and multichannel scattering systems, with or without conditions on the observation of the scattering particle, and for incoming wave packets whose energy can be smeared out or sharply peaked (fixed energy). We conclude our conceptual analysis by presenting what we think is the right interpretation of the concepts of sojourn and delay times in quantum mechanics, explaining why, in ultimate analysis, they should not be called “times.”

Keywords

time-delay sojourn time scattering theory time-dependent potentials non-spatiality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. P. Wigner, Phys. Rev. 98, 145 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    L. Eisenbud, PhD. thesis, Princeton University (Princeton, United States, 1948)Google Scholar
  3. [3]
    F. T. Smith, Phys. Rev. 118, 349 (1960)MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Goldberger, K. M. Watson, Collision theory (John Wiley Sons, New York, 1964)MATHGoogle Scholar
  5. [5]
    J. M. Jauch, J.-P. Marchand, Helv. Phys. Acta 40, 217 (1967)MathSciNetGoogle Scholar
  6. [6]
    J. M. Jauch, K. B. Sinha, B. N. Misra, Helv. Phys. Acta 45, 398 (1972)MathSciNetGoogle Scholar
  7. [7]
    D. Bollé, T. A. Osborn, Phys. Rev. D 11, 3417 (1975)ADSCrossRefGoogle Scholar
  8. [8]
    P. A. Martin, Acta Phys. Austriaca, Suppl. 23, 157 (1981)Google Scholar
  9. [9]
    W. O. Amrein, M. B. Cibils, Helv. Phys. Acta 60, 481 (1987)MathSciNetGoogle Scholar
  10. [10]
    W. O. Amrein, M. B. Cibils, K. B. Sinha, Annales de l’Institut Henri Poincaré 47, 367 (1987)MathSciNetMATHGoogle Scholar
  11. [11]
    M. Sassoli de Bianchi, Ph. A. Martin, Helv. Phys. Acta 65, 1119 (1992)MathSciNetGoogle Scholar
  12. [12]
    C. Gérard, R. Tiedra de Aldecoa, J. Math. Phys. 48, 122101 (2007)MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. Richard, R. Tiedra de Aldecoa, arXiv:1008.3433 [math-ph]Google Scholar
  14. [14]
    H. Salecker, E. P. Wigner, Phys. Rev. 109, 217 (1958)MathSciNetCrossRefGoogle Scholar
  15. [15]
    A. I. Baz’, Sov. J. Nucl. Phys.+ 4, 182 (1967)Google Scholar
  16. [16]
    V. F. Rybachenko, Sov. J. Nucl. Phys.+ 5, 635 (1967)Google Scholar
  17. [17]
    T. E. Hartman, Tunneling of a wave packet, J. Appl. Phys. 33, 3427 (1962)ADSCrossRefGoogle Scholar
  18. [18]
    E. H. Hauge, J. A. Stovneng, Rev. Mod. Phys. 61, 917 (1989)ADSCrossRefGoogle Scholar
  19. [19]
    V. S. Olkhovsky, E. Recami, Phys. Rep. 214, 339 (1992)ADSCrossRefGoogle Scholar
  20. [20]
    V. S. Olkhovsky, E. Recami, Advances in Mathematical Physics, DOI:10.1155/2009/859710.Google Scholar
  21. [21]
    V. S. Olkhovsky, E. Recami, J. Jakielc, Phys. Rep. 398, 133 (2004)ADSCrossRefGoogle Scholar
  22. [22]
    E. Recami, V. S. Olkhovsky, S. P. Maydanyuk, Int. J. Mod. Phys. A, 25, 9, 1785 (2010)MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    V. S. Olkhovsky, Phys. Usp.+ 54, 829 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    R. Landauer, Th. Martin, Rev. Mod. Phys. 66, 217 (1992)ADSCrossRefGoogle Scholar
  25. [25]
    J. Muga et al. (Eds.), Lect. Notes Phys. 1, 734 (2008)Google Scholar
  26. [26]
    J. Muga et al. (Eds.), Lect. Notes Phys. 2, 789 (2009)ADSGoogle Scholar
  27. [27]
    W. Jaworski, D. Wardlaw, Phys. Rev. A 37, 2843 (1988)ADSCrossRefGoogle Scholar
  28. [28]
    W. Jaworski, D. Wardlaw, Phys. Rev. A 38, 5404 (1988)ADSCrossRefGoogle Scholar
  29. [29]
    W. Jaworski, D. Wardlaw, Phys. Rev. A 40, 6210 (1989)ADSCrossRefGoogle Scholar
  30. [30]
    W. Jaworski, D. Wardlaw, Phys. Rev. A 43, 5137 (1991)ADSCrossRefGoogle Scholar
  31. [31]
    M. Sassoli de Bianchi, Helv. Phys. Acta 66, 361 (1993)MathSciNetGoogle Scholar
  32. [32]
    P. A. Martin, M. Sassoli de Bianchi, J. Phys. A-Math. Gen. 25, 3627 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    H. Narnhofer, Phys. Rev. D 22, 2387 (1980)MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. Temple, Nature 135, 957 (1935)ADSCrossRefGoogle Scholar
  35. [35]
    J. Hilgevoord, Am. J. Phys. 70, 301 (2002)ADSCrossRefGoogle Scholar
  36. [36]
    G. R. Allcock, Ann. Phys. New York 53, 253 (1969)ADSCrossRefGoogle Scholar
  37. [37]
    R. Werner, J. Math. Phys. 27, 793 (1986)MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    K. Kong Wan, R. H. Fountain, Z. Y. Tao, J. Phys. AMath. Gen. 28, 2379 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    W. O. Amrein, J. M. Jauch, K. B. Sinha, Scattering theory in quantum mechanics (Benjamin, Reading, 1977)Google Scholar
  41. [41]
    A. Jensen, Commun. Math. Phys. 82, 435 (1981)ADSMATHCrossRefGoogle Scholar
  42. [42]
    P. A. Martin, M. Sassoli de Bianchi, Found. Phys. 24, 1371 (1994)MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    W. Jaworski, D. Wardlaw, Phys. Rev. A 45, 292 (1992)ADSCrossRefGoogle Scholar
  44. [44]
    R. Golub et al., Phys. Lett. A 148, 27 (1990)ADSCrossRefGoogle Scholar
  45. [45]
    P. A. Martin, Nuovo Cimento 30B, 217 (1975)ADSGoogle Scholar
  46. [46]
    W. Jaworski, J. Math. Phys. 30, 1505 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  47. [47]
    R. Lavine, J. Funct. Anal. 12, 30 (1973)MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    J. A. Damborenea, I. L. Egusquiza, J. G. Muga, Am. J. Phys. 70, 738 (2002)ADSCrossRefGoogle Scholar
  49. [49]
    J. E. G. Farina, Am. J. Phys. 61, 466 (1992)MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    P. A. Martin, Commun. Math. Phys. 47, 221 (1976)ADSCrossRefGoogle Scholar
  51. [51]
    D. Bollé, J. D’Hondt, J. Phys. A-Math. Gen. 14, 1663 (1981)ADSCrossRefGoogle Scholar
  52. [52]
    H. Narnhofer, W. Thirring, Phys. Rev. A 23, 1688 (1981)MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    V. S. Olkhovsky, Sov. J. Nucl. Phys. 15, 130 (1984)Google Scholar
  54. [54]
    V. S. Olkhovsky, Nukleonika 35, 99 (1990)Google Scholar
  55. [55]
    R. Bonifaccio (Ed.), AIP, 272 (1998)Google Scholar
  56. [56]
    V. S. Olkhovsky, E. Recami, A. I. Gerasimchuk, Nuovo Cimento 22A, 263 (1974)MathSciNetADSGoogle Scholar
  57. [57]
    B. J. Verhaar et al., Physica 91A, 119 (1978)ADSGoogle Scholar
  58. [58]
    J. P. Falck, E. H. Hauge, Phys. Rev. B 38, 3287 (1988)ADSCrossRefGoogle Scholar
  59. [59]
    D. S. Saraga, M. Sassoli de Bianchi, Helv. Phys. Acta 70, 751 (1997)MathSciNetMATHGoogle Scholar
  60. [60]
    D. R. Yafaev, In: A. Boutet de Monvel et al. (Ed.), Recent developments in quantum mechanics (Kluwer Academic Publishers, Netherlands, 1991) 367CrossRefGoogle Scholar
  61. [61]
    P. A. Martin, M. Sassoli de Bianchi, J. Phys. A-Math. Gen. 28, 2403 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    D. Aerts, In: D. Aerts, J. Broekaert, E. Mathijs (Eds.), The white book of ”Einstein meets Magritte” (Kluwer Academic Publishers, Dordrecht, 1999) 129Google Scholar
  63. [63]
    D. Aerts, In: Elena Castellani (Ed.), Interpreting bodies, classical and quantum objects in modern physics (Princeton University Press, Princeton, 1998) 223Google Scholar
  64. [64]
    M. Sassoli de Bianchi, Found. Sci. 16, 393 (2011)MathSciNetCrossRefGoogle Scholar
  65. [65]
    M. Büttiker, Phys. Rev. B 27, 6178 (1983)ADSCrossRefGoogle Scholar
  66. [66]
    D. Bollé, T. A. Osborn, J. Math. Phys. 20, 1121 (1979)MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    W. O. Amrein, P. Jacquet, Phys. Rev. A 75, 022106 (2007)ADSCrossRefGoogle Scholar
  68. [68]
    R. Tiedra de Aldecoa, Annales de l’Institut Henri Poincaré 7, 105 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  69. [69]
    M. Sassoli de Bianchi, J. Math. Phys. 35, 2719 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  70. [70]
    M. Sassoli de Bianchi, Found. Sci., DOI: 10.1007/s10699-011-9233-z (in press)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Laboratorio di Autoricerca di BaseCaronaSwitzerland

Personalised recommendations