Skip to main content
Log in

Energy-loss function of TTF-TCNQ

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We investigate the energy-loss function for a previously developed model of quasi-one-dimensional metals with two one-dimensional electron bands per donor and acceptor chains and the three-dimensional long-range Coulomb electron-electron interaction within the random phase approximation. It is essentially influenced by two hybridized collective modes which result from the strong coupling of the intraband plasmon and the interband dipolar modes. Our calculations show that the spectral weights of the renormalized plasmon and the dipolar mode dominate within the long wavelength limit, while for large longitudinal wave vectors the intraband electron-hole quasi-continuumgains some experimentally observable spectral weight as the second mode approaches it. The function obtained is brought into correspondence with the data of the quasi-one-dimensional organic conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) obtained from electron energy-loss spectroscopy (EELS) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Takahashi et al., Appl. Phys. Lett. 88, 073504 (2006)

    Article  ADS  Google Scholar 

  2. K. Shibata et al., Appl. Phys. Lett. 90, 193509 (2007)

    Article  ADS  Google Scholar 

  3. M. Sakai et al., Synthetic. Met. 153, 293 (2005)

    Article  Google Scholar 

  4. T. Hagesawa, J. Takeya, Sci. Technol. Adv. Mat. 10, 024314 (2009)

    Article  Google Scholar 

  5. D. Pines, Elementary excitations in solids (McGraw-Hill Book Company, New York, 1971)

    Google Scholar 

  6. J. Fink et al., J. Electron Spectrosc. 117, 287–309 (2001)

    Article  Google Scholar 

  7. R. F. Egerton, Rep. Prog. Phys. 72, 016502 (2009)

    Article  ADS  Google Scholar 

  8. L. Hedin, S. Lundqvist, In: F. Seitz, D. Turnbull (Ed.), Solid state physics 23 (New York, Academic, New York, 1969) 1

    Google Scholar 

  9. S. Hufner et al., J. Electron Spectrosc. 100, 191 (1999)

    Article  Google Scholar 

  10. S. Hufner, Springer Series Soli. 82, 1 (2003)

    Google Scholar 

  11. A. Bostwick et al., Science 328, 999 (2010)

    Article  ADS  Google Scholar 

  12. J. J. Ritsko et al., Phys. Rev. Lett. 34, 1330 (1975)

    Article  ADS  Google Scholar 

  13. P. F. Williams, A. N. Bloch, Phys. Rev. B 10, 1097 (1974)

    Article  ADS  Google Scholar 

  14. P. F. Williams, A. N. Bloch, Phys. Rev. Lett. 36, 64 (1976)

    Article  ADS  Google Scholar 

  15. L. M. Khan, J. Ruvalds, Phys. Rev. B 17, 4600 (1978)

    Article  ADS  Google Scholar 

  16. D. B. Tanner et al., Phys. Rev. B 13, 3381 (1976)

    Article  ADS  Google Scholar 

  17. C. S. Jacobsen, Lect. Notes. Phys. 95, 223 (1979)

    Article  ADS  Google Scholar 

  18. H. Basista et al., Phys. Rev. B 42, 4088 (1990)

    Article  ADS  Google Scholar 

  19. P. Županović, A. Bjeliš, S. Barišić, EPL-Europhys. Lett. 45, 188 (1999)

    Article  ADS  Google Scholar 

  20. Ž. Bonačić Lošić, P. Županović, Cent. Eur. J. Phys. 8, 283 (2010)

    Article  Google Scholar 

  21. S. Das Sarma, A. Madhubar, Phys. Rev. 23, 805 (1981)

    Article  ADS  Google Scholar 

  22. S. Das Sarma, E. H. Hwang, Phys. Rev. B 54, 1936 (1996)

    Article  ADS  Google Scholar 

  23. S. Das Sarma, E. H. Hwang, Phys. Rev. B 59, 10730 (1999)

    Article  Google Scholar 

  24. B. Wunsch et al., New J. Phys. 8, 318 (2006)

    Article  ADS  Google Scholar 

  25. E. H. Hwang, S. Das Sarma, Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  26. M. Polini et al., Phys. Rev. B 77, 081411 (2008)

    Article  ADS  Google Scholar 

  27. P. K. Pyatkovskiy, J. Phys.-Condens. Mat. 21, 025506 (2009)

    Article  ADS  Google Scholar 

  28. E. H. Hwang, S. Das Sarma, Phys. Rev. B 80, 205405 (2009)

    Article  ADS  Google Scholar 

  29. A. L. Fetter, J. D. Walecka, Quantum theory of manyparticle systems (W. A. Benjamin, Inc., New York, Amsterdam, 1964)

    Google Scholar 

  30. A. S. Pennelly, C. J. Echardt, Chem. Phys. 12, 89 (1976)

    Article  Google Scholar 

  31. D. Jérome, H. J. Schulz, Adv. Phys. 31, 299 (1982)

    Article  ADS  Google Scholar 

  32. P. Županović, A. Bjeliš, S. Barišić, Z. Phys. B Con. Mat. 101, 387 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željana Bonačić Lošić.

About this article

Cite this article

Lošić, Ž.B. Energy-loss function of TTF-TCNQ. centr.eur.j.phys. 10, 172–180 (2012). https://doi.org/10.2478/s11534-011-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-011-0095-3

Keywords

Navigation