Co doped ZnO semiconductor materials: structural, morphological and magnetic properties

  • Adriana Popa
  • Dana Toloman
  • Oana Raita
  • Alexandru Radu Biris
  • Gheorghe Borodi
  • Thikra Mustafa
  • Fumiya Watanabe
  • Alexandru Sorin Biris
  • Alexandru Darabont
  • Liviu Mihail Giurgiu
Research Article

Abstract

Structural, morphological and magnetic properties of Zn1−xCoxO (x = 0.01 and 0.03) powdered materials are presented. XRD studies reveal a wurtzite-type structure, while the formation of a Co3O4 secondary phase was evidenced by Raman spectroscopy. A ferromagnetic behaviour with low Curie temperature was evidenced by Electron Paramagnetic Resonance (EPR) investigation. We suggest that the origin of the ferromagnetism in Zn1−xCoxO powders is probably due to the presence of the mixed cation valence of Co ions via a double-exchange mechanism rather than the real doping effect.

Keywords

diluted magnetic semiconductors ZnO powders ferromagnetism 

References

  1. [1]
    G. A. Prinz, Science 282, 1660 (1998)CrossRefGoogle Scholar
  2. [2]
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  3. [3]
    T. S. Herng, S. P. Lau, S. F. Yu, J. S. Chen, K. S. Teng, J. Magn. Magn. Mat. 315, 107 (2007)ADSCrossRefGoogle Scholar
  4. [4]
    W. Chen, L. F. Zhao, Y. Q. Wang, J. H. Miao, S. Liu, Z. C. Xia, S. L. Yuan, Solid State Comm. 134, 827 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    J. W. Quilty, A. Shibata, J. Y. Son, K. Takubo, T. Mizokawa, H. Toyosaki, T. Fukumura, M. Kawasaki, Phys. Rev. Lett. 96, 0272021 (2006)CrossRefGoogle Scholar
  6. [6]
    C. Song et al., Phys. Rev.B 73, 024405 (2006)ADSCrossRefGoogle Scholar
  7. [7]
    P. Sati et al., Phys. Rev. Lett. 96, 017203 (2006)ADSCrossRefGoogle Scholar
  8. [8]
    G. Lawes, A. S. Risbud, A. P. Ramirez, R. Seshadriet, Phys. Rev.B 71, 0452011 (2005)CrossRefGoogle Scholar
  9. [9]
    M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Appl. Phys. Lett. 87, 052501 (2005)ADSCrossRefGoogle Scholar
  10. [10]
    T. Dietl, H. Ohno, F. Matsukara, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  11. [11]
    J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  12. [12]
    K. R. Kittilstved, J. Zhao, W. K. Liu, J. D. Bryan, D. A. Schwartz, D. R. Gamelin, Appl. Phys. Lett. 89, 062510 (2006)ADSCrossRefGoogle Scholar
  13. [13]
    W. K. Liu, G. M. Salley, D. R. Gamelin, J. Phys. Chem. B 109, 14486 (2005)CrossRefGoogle Scholar
  14. [14]
    K. R. Kittilstved, W. K. Liu, D. R. Gamelin, Nat. Mater. 5, 291 (2006)ADSCrossRefGoogle Scholar
  15. [15]
    K. U. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)ADSCrossRefGoogle Scholar
  16. [16]
    H. T. Lin, T. S. Chin, J. C. Shih, Appl. Phys. Lett. 85, 621 (2004)ADSCrossRefGoogle Scholar
  17. [17]
    S. C. Wi et al., Appl. Phys. Lett. 84, 4233 (2004)ADSCrossRefGoogle Scholar
  18. [18]
    S. Zhou, K. Potzger, G. Zhang, F. Eichhorn, W. Skorupa, M. Helm, J. Fassbender, J. Appl. Phys. 100, 114304 (2006)ADSCrossRefGoogle Scholar
  19. [19]
    X. Z. Li, J. Zhang, D. J. Sellmyer, Solid State Commun. 141, 398 (2007)ADSCrossRefGoogle Scholar
  20. [20]
    C. Sudakar, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, Phys. Rev. B 75, 054423 (2007)ADSCrossRefGoogle Scholar
  21. [21]
    M. Opel, K. W. Nielsen, S. Bauer, S. T. B. Gönnenwein, R. Gross, J. C. Cezar, D. Schmeisser, J. Simon, W. Mader, Eur. Phys. J. B 63, 437 (2008)ADSCrossRefGoogle Scholar
  22. [22]
    J. Hays, K. M. Reddy, N. Y. Graces, M. H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N. C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, J. Phys-Condens Mat. 19, 266203 (2007)ADSCrossRefGoogle Scholar
  23. [23]
    J. B. Wang, G. J. Huang, X. L. Zhong, L. Z. Sun, Appl. Phys. Lett. 88, 252502 (2006)ADSCrossRefGoogle Scholar
  24. [24]
    B. C. Cheng, Y. H. Xiao, G. S. Wu, L. D. Zhang, Appl. Phys. Lett. 84, 416 (2004)ADSCrossRefGoogle Scholar
  25. [25]
    N. Volbers, H. Zhou, C. Knies, D. Pfisterer, J. Sann, D. Hofmann, B. Meyer, Appl. Phys. A-Mater. 88, 153 (2007)ADSCrossRefGoogle Scholar
  26. [26]
    B. M. Weckhuysen, An A. Verberckmoes, M. G. Uytterhoeven, F. E. Mabbs, D. Collison, E. de Boer, R. A. Schoonheydt, J. Phys. Chem. B 104, 37 (2000)CrossRefGoogle Scholar
  27. [27]
    S. K. Misra, S. I. Andronenko, K. M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 99, 08M106 (2006)CrossRefGoogle Scholar
  28. [28]
    P. Dutta, M. S. Seehra, S. Thota, J. Kumar, J. Phys-Condens. Mat. 20, 015218 (2008)ADSCrossRefGoogle Scholar
  29. [29]
    N. Guskos, J. Typek, M. Maryniak, G. Zolnierkiewicz, M. Podsiadly, W. Arabczyk, Z. Lendzion-Bielun, U. Narkiewicz, Mater Sci+ 24, 1095 (2006)Google Scholar
  30. [30]
    N. Jedrecy, H. J. von Bardeleben, Y. Zheng, J. L. Cantin, Phys. Rev. B 69, 041308(R) (2004)ADSCrossRefGoogle Scholar
  31. [31]
    A. O. Ankiewicz, M. C. Carmo, N. A. Sobolev, W. Gehlhoff, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, J. Appl. Phys. 101, 024324 (2007)ADSCrossRefGoogle Scholar
  32. [32]
    S. M. Kaczmarek, G. Leniec, J. Typek, G. Boulon, A. Bensalah, J. Lumin. 129, 1568 (2009)CrossRefGoogle Scholar
  33. [33]
    P. Sati, A. Stepanov, V. Pashchenko, Low Temp. Phys.+ 33, 927 (2007)ADSCrossRefGoogle Scholar
  34. [34]
    J. Hays, K. M. Reddy, N. Y. Graces, M. H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N. C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, J. Phys-Condens. Mat. 19, 266203 (2007)ADSCrossRefGoogle Scholar
  35. [35]
    N. Jedrecy, H. J. von Bardeleben, D. Demaille, Phys. Rev. B 80, 205204 (2009)ADSCrossRefGoogle Scholar
  36. [36]
    H. J. von Bardeleben, N. Jedrecy, J. L. Cantin, Appl. Phys. Lett. 93, 142505 (2008)ADSCrossRefGoogle Scholar
  37. [37]
    O. Raita, A. Popa, D. Toloman, M. Stan, A. Darabont, L. Giurgiu, Appl. Magn. Reson. 40, 245 (2011)CrossRefGoogle Scholar
  38. [38]
    M. S. Martin-Gonzalez et al., J. Appl. Phys. 103, 083905 (2008)ADSCrossRefGoogle Scholar
  39. [39]
    A. Quesada, M. A. Garcia, M. Andres, A. Hernando, J. F. Fernandez, A. C. Caballero, M. S. Martin-Gonzalez, F. Briones, J. Appl. Phys. 100, 113909 (2006)ADSCrossRefGoogle Scholar
  40. [40]
    X. Wang, R. Zheng, Z. Liu, H. P. Ho, J. Xu, S. P. Ringer, Nanotechnology 19, 455702 (2008)ADSCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Adriana Popa
    • 1
  • Dana Toloman
    • 1
  • Oana Raita
    • 1
  • Alexandru Radu Biris
    • 1
  • Gheorghe Borodi
    • 1
  • Thikra Mustafa
    • 2
  • Fumiya Watanabe
    • 2
  • Alexandru Sorin Biris
    • 2
  • Alexandru Darabont
    • 1
  • Liviu Mihail Giurgiu
    • 1
  1. 1.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.UALR Nanotechnology Center, Applied Science DepartmentUniversity of Arkansas at Little RockArkansasUSA

Personalised recommendations