Skip to main content
Log in

Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress τ 0 → 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t 1 and t 2) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Young, Philos. T. R. Soc. Lond. 98, 164 (1808)

    Article  Google Scholar 

  2. S.I. Rubinow, J.B. Keller, J. Theor. Biol. 35, 299 (1972)

    Article  Google Scholar 

  3. A.C. Burton, Am. J. Physiol. 164, 319 (1951)

    Google Scholar 

  4. D.L. Fry, Comput. Biomed. Res. 2, 111 (1968)

    Article  Google Scholar 

  5. G.A. Brecher, Am. J. Physiol. 169, 423 (1952)

    Google Scholar 

  6. S. Rodbrad, Circulation 11, 280 (1955)

    Google Scholar 

  7. A.C. Guyton, In: W.F. Hamilton (Ed.), Handbook of Physiology Circulation II, Vol. 2 (American Physiologic Society, Washington DC, 1963) 1099

    Google Scholar 

  8. G.A. Brecher, Venos Return (Grune and Stratton, New York, 1956)

    Google Scholar 

  9. J. Bainster, R.W. Torrance, Q. J. Exp. Physiol. 45, 352 (1960)

    Google Scholar 

  10. S. Permutt, B. Bromberger-Barnea, H.N. Bane, Med. Thorac. 19, 239 (1962)

    Google Scholar 

  11. F.P. Knowlton, E.H. Starling, J. Physiol.-London 44, 206 (1912)

    Google Scholar 

  12. P. Chaturani, V.R. Ponnalagar, Biorheology 22, 521 (1985)

    Google Scholar 

  13. V.P. Srivastava, M. Sexena, J. Biomech. 27, 921 (1994)

    Article  Google Scholar 

  14. N. Iida, Jpn. J. Appl. Phys. 17, 203 (1978)

    Article  ADS  Google Scholar 

  15. G.W. Scott-Blair, D.C. Spanner, An Introduction to Biorheology (Elsevier Scientific Publishing Company, Amsterdam, 1974)

    Google Scholar 

  16. G.W. Scott-Blair, Rheol. Acta 5, 184 (1966)

    Article  Google Scholar 

  17. A.G. Hoekstra, J. van’t-Hoff, A.M. Artoli, P.M.A. Sloot, Future Gener. Comp. Sy. 20, 917 (2004)

    Article  Google Scholar 

  18. D.S. Sankar, K. Hemalatha, Appl. Math. Model. 31, 1847 (2007)

    Article  MATH  Google Scholar 

  19. K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Appl. Math. Comput. 169, 726 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Tu, M. Deville, J. Biomech. 29, 899 (1996)

    Article  Google Scholar 

  21. P. Chaturani, R.P. Swamy, Journal of Biorheology 22, 521 (1985)

    Google Scholar 

  22. D.S. Sankar, K. Hemalatha, Appl. Math. Comput. 188, 567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Q. Appl. Math. 64, 593 (2005)

    MathSciNet  Google Scholar 

  24. K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Int. J. Nonlin. Mech. 40, 83 (2005)

    Article  MATH  Google Scholar 

  25. D.S. Snakar, U. Lee, Commun. Nonlinear Sci. 14, 2971 (2009)

    Article  Google Scholar 

  26. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, New York, 2007) 11

    Google Scholar 

  27. M.R. Roach, A.C. Burton, Can. J. Biochem. Phys. 37, 557 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppalapalle Vajravelu.

About this article

Cite this article

Vajravelu, K., Sreenadh, S., Devaki, P. et al. Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube. centr.eur.j.phys. 9, 1357–1365 (2011). https://doi.org/10.2478/s11534-011-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-011-0034-3

Keywords

Navigation