Skip to main content
Log in

A fluid generalization of membranes

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In a certain sense a perfect fluid is a generalization of a point particle. This leads to the question as to what is the corresponding generalization for extended objects. Here the lagrangian formulation of a perfect fluid is much generalized by replacing the product of the co-moving vector which is a first fundamental form by higher dimensional first fundamental forms; this has as a particular example a fluid which is a classical generalization of a membrane; however there is as yet no indication of any relationship between their quantum theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aurilia, E. Spallucci, Classical Quant. Grav. 10, 1217 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. D. Birrel, P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Google Scholar 

  3. R. Cartas-Fuentevilla, Phys. Lett. B 536, 283 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. B. Carter, I.M. Khalatnikov, Ann. Phys.-New York 219, 243 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. P.A.M. Dirac, P. R. Soc. A 268, 57 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. G. Gibbons, K. Hori, P. Yi, Nucl. Phys. B 596, 136 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory: Volume1Introduction (CambridgeUniversity Press, Cambridge, 1987)

    Google Scholar 

  8. E.I. Guendelman, E. Spallucci, Phys. Rev. D 70, 026003 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, London-NewYork, 1973)

    Book  MATH  Google Scholar 

  10. W. A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Hoppe, Phys. Lett. B 335, 41 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Jackiw, arXiv:hep-th/0010042

  13. V.G. Lapchinskii, V.A. Rubakov, Theor. Math. Phys. 33, 1076 (1977)

    Article  Google Scholar 

  14. M. Pavšič, Phys. Lett. B 197, 327 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. D. Roberts, Hadronic J. 20, 73 (1997)

    MATH  Google Scholar 

  16. M. D. Roberts, Math. Phys. Anal. Geom. 1, 367 (1999)

    Article  MATH  Google Scholar 

  17. M. D. Roberts, ClassicalQuant. Grav. 20, 507 (2003)

    Article  ADS  MATH  Google Scholar 

  18. M. D. Roberts, Cent. Eur. J. Phys. 8, 915 (2010)

    Article  Google Scholar 

  19. M. D. Roberts, arXiv:0910. 3587

  20. A. A. Tseytlin, Int. J. Mod. Phys. A 4, 1257 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Roberts.

About this article

Cite this article

Roberts, M.D. A fluid generalization of membranes. centr.eur.j.phys. 9, 1016–1021 (2011). https://doi.org/10.2478/s11534-011-0031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-011-0031-6

Keywords

Navigation