Central European Journal of Physics

, Volume 9, Issue 1, pp 96–109 | Cite as

A theoretical model for the collective motion of proteins by means of principal component analysis

Research Article
  • 55 Downloads

Abstract

A coarse grained model in the frame work of principal component analysis is presented. We used a bath of harmonic oscillators approach, based on classical mechanics, to derive the generalized Langevin equations of motion for the collective coordinates. The dynamics of the protein collective coordinates derived from molecular dynamics simulations have been studied for the Bovine Pancreatic Trypsin Inhibitor. We analyzed the stability of the method by studying structural fluctuations of the Ca atoms obtained from a 20 ns molecular dynamics simulation. Subsequently, the dynamics of the collective coordinates of protein were characterized by calculating the dynamical friction coefficient and diffusion coefficients along with time-dependent correlation functions of collective coordinates. A dual diffusion behavior was observed with a fast relaxation time of short diffusion regime 0.2–0.4 ps and slow relaxation time of long diffusion about 1–2 ps. In addition, we observed a power law decay of dynamical friction coefficient with exponent for the first five collective coordinates varying from −0.746 to −0.938 for the real part and from −0.528 to −0.665 for its magnitude. It was found that only the first ten collective coordinates are responsible for configuration transitions occurring on time scale longer than 50 ps.

Keywords

principal component analysis collective coordinates Langevin equation harmonic bath 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9, 646 (2002)CrossRefGoogle Scholar
  2. [2]
    M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9, 788 (2002)CrossRefGoogle Scholar
  3. [3]
    W.F. van Gunsteren et al., Angew. Chem. Int. Edit. 9, 4064 (2006)Google Scholar
  4. [4]
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)CrossRefADSGoogle Scholar
  5. [5]
    H. Grubmüller, Phys. Rev. E 52, 2893 (1995)CrossRefADSGoogle Scholar
  6. [6]
    Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999)CrossRefADSGoogle Scholar
  7. [7]
    A. Laio, M. Parrinello, Proc. Nat. Acad. Sci. U.S.A. 99, 12562 (2002)CrossRefADSGoogle Scholar
  8. [8]
    P. Minary, G.J. Martyna, M.E. Tuckerman, Phys. Rev. Lett. 93, 150201 (2004)CrossRefADSGoogle Scholar
  9. [9]
    H. Kamberaj, A. van der Vaart, J. Chem. Phys. 127, 234102 (2007)CrossRefADSGoogle Scholar
  10. [10]
    H. Kamberaj, A. van der Vaart, J. Chem. Phys. 130, 074906 (2009)CrossRefADSGoogle Scholar
  11. [11]
    R.G. Palmer, Adv. Phys. 32, 669 (1982)CrossRefADSGoogle Scholar
  12. [12]
    Y. Ueeda, H. Taketomi, N. Gō Biopolymers 17, 1531 (1978)CrossRefGoogle Scholar
  13. [13]
    J.A. McCammon, S.H. Northrup, M. Karplus, R.M. Levy, Biopolymers 19, 2033 (1984)CrossRefGoogle Scholar
  14. [14]
    I. Bahar, J. Mol. Biol. 266, 195 (1997)CrossRefGoogle Scholar
  15. [15]
    A. Irbäck, F. Sjunnesson, S. Wallin, Proc. Nat. Acad. Sci. U.S.A. 97, 13614 (2000)CrossRefADSGoogle Scholar
  16. [16]
    A.V. Smith, C.K. Hall, Proteins 44, 344 (2001)CrossRefGoogle Scholar
  17. [17]
    A.V. Smith, C.K. Hall, Proteins 44, 376 (2001)CrossRefGoogle Scholar
  18. [18]
    A. Liwo et al., J. Phys. Chem. B 108, 16918 (2004)CrossRefGoogle Scholar
  19. [19]
    S. Oldziej, A. Liwo, C. Czaplewski, J. Pillardy, H.A. Scheraga, J. Phys. Chem. B 108, 16934 (2004)CrossRefGoogle Scholar
  20. [20]
    S. Oldziej et al., J. Phys. Chem. B. 108, 16950 (2004)CrossRefGoogle Scholar
  21. [21]
    V. Tozzini, Curr. Opin. Struc. Biol. 15, 144 (2005)CrossRefGoogle Scholar
  22. [22]
    V. Tozzini, J.A. McCammon, Chem. Phys. Lett. 413, 123 (2005)CrossRefADSGoogle Scholar
  23. [23]
    V. Tozzini, W. Rocchia, J.A. McCammon, J. Chem. Theory Comput. 2, 667 (2006)CrossRefGoogle Scholar
  24. [24]
    V. Tozzini, J. Trylska, C.-E Chang, J.A. McCammon, J. Struct. Biol. 157, 606 (2007)CrossRefGoogle Scholar
  25. [25]
    J. Trylska, V. Tozzini, C.-E Chang, J.A. McCammon, Biophys. J. 92, 4179 (2007)CrossRefADSGoogle Scholar
  26. [26]
    K. Karhunen, Ann. Acad. Sci. Fenn. A1 37, 3 (1947)Google Scholar
  27. [27]
    B.B. Brooks, D. Janezic, M. Karplus, J. Comput. Chem. 16, 1522 (1995)CrossRefGoogle Scholar
  28. [28]
    D. Janezic, B.B. Brooks, J. Comput. Chem. 16, 1543 (1995)CrossRefGoogle Scholar
  29. [29]
    M. Karplus, J.N. Jushick, Macromolecules 14, 325 (1981)CrossRefADSGoogle Scholar
  30. [30]
    T. Ichiye, M. Karplus, Proteins 11, 205 (1991)CrossRefGoogle Scholar
  31. [31]
    T. Horiuchi, N. Gō, Proteins 10, 106 (1990)CrossRefGoogle Scholar
  32. [32]
    A. Kitao, F. Hirata, N. Gō, Chem. Phys. 158, 447 (1991)CrossRefADSGoogle Scholar
  33. [33]
    A. Amadei, A.B.M. Linssen, H.J.C. Berendsen, Proteins: Structure, Function and Genetics 17, 412 (1993)CrossRefGoogle Scholar
  34. [34]
    D. Aalten et al., Proteins: Structure, Function, and Genetics 22, 45 (1995)CrossRefGoogle Scholar
  35. [35]
    N. Gō, Biophys. Chem. 35, 105 (1990)CrossRefADSGoogle Scholar
  36. [36]
    A.E. Garcia, Phys. Rev. Lett. 68, 2696 (1992)CrossRefADSGoogle Scholar
  37. [37]
    H. Grubmüller, P. Tavan, J. Chem. Phys. 101, 5047 (1994)CrossRefADSGoogle Scholar
  38. [38]
    M.A. Balsera, W. Wriggers, Y. Oono, K. Schulten, J. Phys. Chem. B 100, 2567 (1996)CrossRefGoogle Scholar
  39. [39]
    O.F. Lange, H. Grubmüller, J. Chem. Phys. 124, 214903 (2006)CrossRefADSGoogle Scholar
  40. [40]
    M. Stepanova, Phys. Rev. E 76, 051918 (2007)CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    R. Benguria, M. Kac, Phys. Rev. Lett. 46, 1 (1981)CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    G.W. Ford, M. Kac, J. Stat. Phys. 46, 803 (1981)CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. A 37, 4419 (1988)CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    P. Hänggi, G.-L. Ingold, Chaos 15, 026105 (2005)CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    O.F. Lange, H. Grubmüller, J. Phys. Chem. B 110, 22842 (2006)CrossRefGoogle Scholar
  46. [46]
    B. Hess, Phys. Rev. E 65, 031910 (2002)CrossRefADSGoogle Scholar
  47. [47]
    D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications (Academic, California, 2002)Google Scholar
  48. [48]
    A. Einstein, Investigations on the theory of the Brownian movement, Edited by Fürth (Methuen and Co. Ltd., London, 1926)Google Scholar
  49. [49]
    S. Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949)MATHCrossRefMathSciNetADSGoogle Scholar
  50. [50]
    M.A. Islam, Phys. Scripta 70, 120 (2004)MATHCrossRefADSGoogle Scholar
  51. [51]
    U. Balucani, M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford, 1994)Google Scholar
  52. [52]
    R.M. Yulmetyev, A.V. Mokshin, P. Hänggi, Phys. Rev. E 68, 051201 (2003)CrossRefADSGoogle Scholar
  53. [53]
    A.V. Mokshin, R.M. Yulmetyev, P. Hänggi, New J. Phys. 7, 1 (2005)CrossRefGoogle Scholar
  54. [54]
    A. Amadei et al., Proteins: Structure, Function and Genetics 35, 283 (1999)CrossRefGoogle Scholar
  55. [55]
    S. Parkin, B. Rupp, H. Hope, Acta Crystallogr. D 52, 18 (1996)CrossRefGoogle Scholar
  56. [56]
    D.A. Case et al., Amber 8.0 (University of California, San Francisco, CA, 2004)Google Scholar
  57. [57]
    T.E. Cheatham III, M.A. Young, Biopolymers 56, 232 (2001)CrossRefGoogle Scholar
  58. [58]
    J.W. Ponder, D.A. Case, Adv. Protein Chem. 66, 27 (2003)CrossRefGoogle Scholar
  59. [59]
    U. Essmann et al., J. Chem. Phys. 103, 8577 (1995)CrossRefADSGoogle Scholar
  60. [60]
    J.P. Ryckaert, G. Ciccotti, J. Comput. Phys. 23, 327 (1977)CrossRefADSGoogle Scholar
  61. [61]
    D. Aalten, B.D. Groot, J. Findlay, H.J.C. Berendsen, A. Amadei, J. Comput. Chem. 18, 169 (1997)CrossRefGoogle Scholar
  62. [62]
    J.A. Hartigan, M.A. Wong, Appl. Statist. 28, 100 (1979)MATHCrossRefGoogle Scholar
  63. [63]
    D. Holmes, E. Mergen, Qual. Eng. 10, 505 (1998)CrossRefGoogle Scholar
  64. [64]
    P.H. Hünenberger, A.E. Mark, W.F. van Gunsteren, J. Mol. Biol. 252, 492 (1995)CrossRefGoogle Scholar
  65. [65]
    M. Karplus, T. Ichiye, J. Mol. Biol. 263, 120 (1996)CrossRefGoogle Scholar
  66. [66]
    L. Meinhold, J.C. Smith, Biophys. J. 88, 2554 (2005)CrossRefADSGoogle Scholar
  67. [67]
    D.M.F. van Aalten et al., Biophys. J. 73, 2891 (1997)CrossRefGoogle Scholar
  68. [68]
    Y. Mu, P.H. Nguyen, G. Stock, Proteins 58, 45 (2005)CrossRefGoogle Scholar
  69. [69]
    G.G. Maisuradze, D.M. Leitner, Proteins 67, 569 (2007)CrossRefGoogle Scholar
  70. [70]
    G.G. Maisuradze, A. Liwo, H.A. Scheraga, J. Mol. Biol. 385, 312 (2009)CrossRefGoogle Scholar
  71. [71]
    W.T. Coffey, Y.P. Kalmykov, J. Waldron, The Langevin Equation, World Scientific Series in Contemporary Chemical Physics volume 10 (World Scientific, Singapore, 1996)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Faculty of Technical SciencesInternational Balkan UniversitySkopjeR. of Macedonia

Personalised recommendations