Skip to main content
Log in

Fractional recurrence in discrete-time quantum walk

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold in general for systems with continuous energy. We show that during quantum walk process dominated by interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using quantum Pólya number can be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Luis Barreira, Poincaré recurrence: old and new, IVth International Congress on Mathematical Physics (World Scientific, 2006) 415

  3. U. Krengel, Ergodic Theorems (Walter de Gruyter, Berlin, New York, 1985)

    MATH  Google Scholar 

  4. P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. L. S. Schulman, Phys. Rev. A 18, 2379 (1978)

    Article  ADS  Google Scholar 

  6. R. W. Robinett, Phys. Rep. 392, 1 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  7. M. V. Berry, J. Phys. A 29, 6617 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. F. Grobmann, J. M. Rost, W. P. Schleich, J. Phys. A 30, L277 (1997)

    Article  ADS  Google Scholar 

  9. M. Berry, I. Marzoli, W. Schleich, Phys. World 14, 39 (2001)

    Google Scholar 

  10. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Phys. Rev. Lett. 95, 053902 (2005)

    Article  ADS  Google Scholar 

  11. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, Proceeding of the 33rd ACM Symposium on Theory of Computing (ACM Press, New York, 2001) 60

    Google Scholar 

  12. M. Stefanak, I. Jex, T. Kiss, Phys. Rev. Lett. 100, 020501 (2008)

    Article  ADS  Google Scholar 

  13. M. Stefanak, T. Kiss, I. Jex, New J. Phys. 11, 043027 (2009)

    Article  ADS  Google Scholar 

  14. Norio Konno, arXiv:0908.2213v3

  15. O. Mülken, A. Blumen, Phys. Rev. E 71, 036128 (2005)

    Article  ADS  Google Scholar 

  16. O. Mülken, A. Blumen, Phys. Rev. E 73, 066117 (2006)

    Article  ADS  Google Scholar 

  17. G. V. Riazanov, Sov. Phys. JETP-USSR 6, 1107 (1958)

    MathSciNet  ADS  Google Scholar 

  18. R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  19. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  20. A. M. Childs et al., Proceedings of the 35th ACM Symposium on Theory of Computing (ACM Press, New York, 2003) 59

    Google Scholar 

  21. N. Shenvi, J. Kempe, K. B. Whaley, Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  22. A. M. Childs, J. Goldstone, Phys. Rev. A 70, 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Ambainis, J. Kempe, A. Rivosh, Proceedings of ACM-SIAM Symp. on Discrete Algorithms (SODA) (AMC Press, New York, 2005) 1099

    Google Scholar 

  24. C. M. Chandrashekar, R. Laflamme, Phys. Rev. A 78, 022314 (2008)

    Article  ADS  Google Scholar 

  25. T. Oka, N. Konno, R. Arita, H. Aoki, Phys. Rev. Lett. 94, 100602 (2005)

    Article  ADS  Google Scholar 

  26. G. S. Engel et al., Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  27. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008)

    Article  ADS  Google Scholar 

  28. P. Révész. Random walk in Random and non-rendom Environments (World Scientific, Singapore, 1990)

    Google Scholar 

  29. G. Pólya, Math. Ann. 84, 149 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  30. D. A. Meyer, J. Stat. Phys. 85, 551 (1996)

    Article  MATH  ADS  Google Scholar 

  31. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, Proceeding of the 33rd ACM Symposium on Theory of Computing (ACM Press, New York, 2001) 60

    Google Scholar 

  32. E. Farhi, S. Gutmann, Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  33. F. Strauch, Phys. Rev. A 74, 030310 (2006)

    Article  MathSciNet  Google Scholar 

  34. C. M. Chandrashekar, Phys. Rev. A 78, 052309 (2008)

    Article  ADS  Google Scholar 

  35. C. M. Chandrashekar, R. Srikanth, R. Laflamme, Phys. Rev. A 77 032326 (2008)

    Article  ADS  Google Scholar 

  36. M. Stefanak, I. Jex, T. Kiss, Phys. Rev. A 78, 032306 (2008)

    Article  ADS  Google Scholar 

  37. D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Proceeding of the 33rd ACM Symposium on Theory of Computing (ACM Press, New York, 2001) 50

    Google Scholar 

  38. B. Tregenna, W. Flanagan, R. Maile, V. Kendon, New J. Phys. 5, 83 (2003)

    Article  ADS  Google Scholar 

  39. N. Inui, Y. Konishi, N. Konno, Phys. Rev. A 69, 052323 (2004)

    Article  ADS  Google Scholar 

  40. N. Inui, N. Konno, E. Segawa, Phys. Rev. E 72, 056112 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Chandrashekar.

About this article

Cite this article

Chandrashekar, C.M. Fractional recurrence in discrete-time quantum walk. centr.eur.j.phys. 8, 979–988 (2010). https://doi.org/10.2478/s11534-010-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-010-0023-y

Keywords

Navigation