Advertisement

Central European Journal of Physics

, Volume 8, Issue 3, pp 455–462 | Cite as

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature

  • Leonid Yaroslavsky
  • Chad Goerzen
  • Stanislav Umansky
  • H. John Caulfield
Research Article
  • 35 Downloads

Abstract

Although optics-less cutaneous (“skin”) vision is not uncommon among living organisms, its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that arrays of bare radiation detectors arranged on a planar or curved surface have the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensors and the model developed here for determining their performance may be used to shed light on possible mechanisms, capabilities and evolution of cutaneous vision in nature.

Keywords

radiation sensors estimation theory cutaneous vision imaging systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Parker, In the Blink of an Eye (Free Press, London; Perseus, Cambridge, MA, 2003)Google Scholar
  2. [2]
    M. F. Land, D. E. Nilsson, Animal Eyes (Oxford, Oxford, 2001)Google Scholar
  3. [3]
    I. R. Schwab, Brit. J. Ophtalmol. 89, 1078 (2005)CrossRefGoogle Scholar
  4. [4]
    K. Zimmerman, H. Heatwole, Copeia, 860 (1990)Google Scholar
  5. [5]
    G. J. Molenaar, In: C. Gans, P. S. Ulinski (Eds.), Biology of the Reptilia, Vol. 17 (University of Chicago, Chicago, 1992) 367Google Scholar
  6. [6]
    A. B. Sichert, P. Friedel, J. L. van Hemmen, Phys. Rev. Lett. 97, 068105 (2006)CrossRefADSGoogle Scholar
  7. [7]
    N. A. M. Schellart, R. J. Wubbels, The Physiology of Fishes, 2nd ed. (CRC Press, 1998)Google Scholar
  8. [8]
    J. Pettigrew, J. Exp. Biol. 202, 1447 (1999)Google Scholar
  9. [9]
    M. Gardner, Science 711, 654 (1966)CrossRefADSGoogle Scholar
  10. [10]
    M. M. Bongard, M. S. Smirnov, Federation Proceedings, Translation Supplement 24, 1015 (1965)Google Scholar
  11. [11]
    H. P. Zavala, D. B. Van Cott, D. B. Orr, V. H. Small, Percept. Motor Skill. 25, 525 (1967)Google Scholar
  12. [12]
    P. Bach-y-Rita, M. E. Tyler, K. A. Kaczmarek, Int. J. Hum.-Comput. Int. 15, 285 (2003)CrossRefGoogle Scholar
  13. [13]
    E. Sampaio, S. Maris, P. Bach-y-Rita, Brain Res. 908, 204 (2001)CrossRefGoogle Scholar
  14. [14]
    H. J. Caulfield, L. P. Yaroslavsky, J. Ludman, arXiv:physics/0703099v1Google Scholar
  15. [15]
    H.J. Caulfield, L. P. Yaroslavsky, Ch. Goerzen, S. Umansky, arXiv:0808.1259v1Google Scholar
  16. [16]
    L. Yaroslavsky, In: A. T. Friberg, R. Daendliker (Eds.), Advances in Information Optics and Photonics (SPIE Press, Bellingham, Washington, USA, 2008) 209CrossRefGoogle Scholar
  17. [17]
    H. L. Van-Trees, Detection, Estimation and Modulation Theory, Part I (Wiley, New York, 1968)zbMATHGoogle Scholar
  18. [18]
    A. H. G. Rinnooy Kan, G. T. Timmer, Math. Program. 39, 27 (1987)zbMATHCrossRefGoogle Scholar
  19. [19]
    L. Yaroslavsky, Digital Holography and Digital Image Processsing (Kluwer Academic Publishers, Boston, 2004) Chap. 10, 11Google Scholar
  20. [20]
    G. Von Békésy, Sensory Inhibition (Princeton University Press, Princeton, 1967)Google Scholar
  21. [21]
    D.-E. Nilsson, D. Arendt, Curr. Biol. 18, R1096 (2008)CrossRefGoogle Scholar
  22. [22]
    D.-E. Nilsson, A. Kelber, Arthropod Struct. Dev. 36, 373 (2007)CrossRefGoogle Scholar
  23. [23]
    W. J. Gehring, J. Hered. 96, 171 (2005)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Leonid Yaroslavsky
    • 1
  • Chad Goerzen
    • 1
  • Stanislav Umansky
    • 1
  • H. John Caulfield
    • 2
  1. 1.Department Physical Electronics, Faculty of EngineeringTel Aviv UniversityTel Aviv, Ramat AvivIsrael
  2. 2.Physics DepartmentFisk UniversityNashvilleUSA

Personalised recommendations