Skip to main content
Log in

Detection of laser induced dielectric breakdown in water using a laser doppler vibrometer

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

This study is focused on exploring the feasibility of an all-optic surface scanning method in determining the size and position of a submerged, laser generated, optoacoustic (OA) source. The optoacoustic effect in this case was generated when the absorption of a short electromagnetic pulse in matter caused a dielectric breakdown, a plasma emission flash and a subsequent acoustic wave. In the experiment, a laser pulse with λ = 1064 nm and 12 ns pulse length was aimed at a volume of deionized water. When the laser beam was focused by a f = 16 mm lens, a single dielectric breakdown spot occurred. When a f = 40 mm was used several breakdowns in a row were induced. The breakdowns were photographed using a double shutter camera. The acoustic wave generated by the dielectric breakdowns were detected at a point on the water surface using a laser Doppler vibrometer (LDV). First, the LDV signal was used to calculate the speed of sound with an accuracy of 10 m/s. Secondly, the location and length of the dielectric breakdown was calculated with an accuracy of 1 mm. The calculated position matched the breakdown location recorded by a camera. The results show that it is possible to use LDV surface measurements from a single spot to determine both the position and length of the OA source as well as the speed of sound in the medium. Furthermore, the LDV measurements also show a secondary peak that originates from the OA source. To unravel the origin and properties of this interesting feature, further investigations are necessary

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Kennedy, D. X. Hammer, B. A. Rockwell, Quantum Electron.+ 21, 155 (1997)

    Article  ADS  Google Scholar 

  2. S. I. Kudryashov, V. D. Zvorykin, Phys. Rev. E 78, 036404–1 (2008

    Article  ADS  Google Scholar 

  3. A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, App. Phys. B-Lasers O. 62, 173 (1996)

    Article  ADS  Google Scholar 

  4. A. Vogel, P. Schweiger, A. Frieser, M. Asiyo, R. Birngruber, IEEE J. Quantum Elect. 21, 2240, (1990)

    Article  ADS  Google Scholar 

  5. A. A. Aliverdiev, A. A. Amirova, M. G. Karimov, Quantum Electron.+ 30, 1115 (2000)

    Article  ADS  Google Scholar 

  6. M. H. Xu, L. H. V. Wang, Rev. Sci. Instrum. 77, 041101–1 (2006)

    Article  ADS  Google Scholar 

  7. A. A. Karabutov, N. B. Podymova, V. S. Letokhov, App. Phys. B-Lasers O. 63, 545 (1996)

    ADS  Google Scholar 

  8. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, IEEE T. Ultrason. Ferr. 52, 1577 (2005)

    Article  Google Scholar 

  9. T. D. Khokhlova et al., Appl. Opt. 46, 262 (2007)

    Article  ADS  Google Scholar 

  10. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, Phys. Med. Biol. 50, 2543 (2005)

    Article  Google Scholar 

  11. J. J. Niederhauser, D. Frauchiger, H. P. Weber, M. Frenz, Appl. Phys. Lett. 81, 571 (2002)

    Article  ADS  Google Scholar 

  12. K. P. Kostli et al., IEEE J. Sel. Top. Quant. 7, 918 (2001)

    Article  Google Scholar 

  13. A. Meyer, S. Gspan, S. Bernet, M. Ritsch-Marte, J. Appl. Phys. 96, 5886 (2004)

    Article  ADS  Google Scholar 

  14. S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, Appl. Phys. Lett. 85, 5772 (2004)

    Article  ADS  Google Scholar 

  15. B.P. Payne, V. Venugopalan, B. B. Mikic, N. S. Nishioka, J. Biomed. Opt. 8, 273 (2003)

    Article  ADS  Google Scholar 

  16. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  17. J. Niemi, T. Löfqvist, P. Gren, In: Proceedings of SPIE vol. 7022, Advanced Laser Technologies 3.-7. 9. 2007, Levi Finland (SPIE, 2008) 70220C-1

  18. N. Bilaniuk, G. S. K. Wong, J. Acoust. Soc. Am. 93, 1609 (1993)

    Article  ADS  Google Scholar 

  19. J. Noack, A. Vogel, Journal of Quantum Electronics 35, 1156 (1999)

    Article  ADS  Google Scholar 

  20. I. Akhatov et al., Phys. Fluids 13, 2805 (2001)

    Article  ADS  Google Scholar 

  21. P. Gregorcic, R. Petrovsek, J. Mozina, G. Mocnik, Appl. Phys. A 93, 901 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha M. Saarela.

About this article

Cite this article

Saarela, J.M., Löfqvist, T., Ramser, K. et al. Detection of laser induced dielectric breakdown in water using a laser doppler vibrometer. centr.eur.j.phys. 8, 235–241 (2010). https://doi.org/10.2478/s11534-009-0122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0122-9

Keywords

Navigation