Skip to main content
Log in

Collective mode dispersions of organic chain compounds

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We investigate the collective mode dispersions for the tight-binding dielectric matrix with two one-dimensional electron bands per donor and acceptor chains, and the three-dimensional long-range Coulomb electron-electron interaction within the random phase approximation. The hybridized collective modes are the result of the strong coupling between the intraband plasmon and the interband dipolar modes due to strong dipole Coulomb interactions. Our calculations show the existence of the low-energy renormalized plasmon mode above the electron-hole quasi-continuum in the long wavelength limit. The obtained modes are brought into correspondence with the optical data of quasi-one-dimensional organic conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Namely, the renormalized plasmon and the dipolar mode are assigned to the observed excitations at respective energy scales of roughly 10 meV and 0.75 eV, explaining why lower excitation is eliminated while higher excitation persists below the temperature of the Peierls phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sahraoui, I.V. Kityk, P. Hudhomme, A. Gorgues, J. Phys. Chem. B 105, 6295 (2001)

    Article  Google Scholar 

  2. J. J. Ritsko et al., Phys. Rev. Lett. 34, 1330 (1975)

    Article  ADS  Google Scholar 

  3. P. F. Williams, A. N. Bloch, Phys. Rev. B 10, 1097 (1974)

    Article  ADS  Google Scholar 

  4. P. F. Williams, A. N. Bloch, Phys. Rev. Lett. 36, 64 (1976)

    Article  ADS  Google Scholar 

  5. L. M. Khan, J. Ruvalds, Phys. Rev. B17, 4600 (1978)

    ADS  Google Scholar 

  6. D. B. Tanner et al., Phys. Rev. B 13, 3381 (1976)

    Article  ADS  Google Scholar 

  7. C. S. Jacobsen, In: S. Barišić et al. (Ed.), Leture Notes in Physics 95, (Springer-Verlag, New York, 1979) 223

    Google Scholar 

  8. H. Basistaetal., Phys. Rev. B 42, 4088 (1990)

    Article  ADS  Google Scholar 

  9. I. Egri, Phys. Rep. 119, 363 (1985)

    Article  ADS  Google Scholar 

  10. P. Županović, A. Bjeliš, S. Barišić, Z. Phys. B 101, 397 (1996)

    Article  Google Scholar 

  11. P. Županović, A. Bjeliš, S. Barišić, Europhys. Lett. 45, 188 (1999)

    Article  ADS  Google Scholar 

  12. R. M. Metzger, A. N. Bloch, J. Chem. Phys. 63, 5098 (1975)

    Article  ADS  Google Scholar 

  13. A. J. Epstein et al., Phys. Rev. B 13, 1569 (1976)

    Article  ADS  Google Scholar 

  14. R. M. Metzger, J. Chem. Phys. 75, 3087 (1981)

    Article  ADS  Google Scholar 

  15. L. Cano-Cortés et al., Eur. Phys. J. B 56, 173 (2007)

    Article  ADS  Google Scholar 

  16. R. R. Pennelly, C. J. Eckhardt, Chem. Phys. 12, 89 (1976)

    Article  Google Scholar 

  17. D. Jérome, H.J. Schulz, Adv. Phys. 31, 299 (1982)

    Article  ADS  Google Scholar 

  18. P. Županović, A. Bjeliš, Ž. Agić, Fizika A (Zagreb) 10, 203 (2001)

    Google Scholar 

  19. A. S. Davydov, Theory of Molecular Excitations (Plenum Press, New York, 1971)

    Google Scholar 

  20. A. J. Berlinsky, J. F. Carolan, L. Weiler, Solid State Comm. 15, 795 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željana Bonačić Lošić.

About this article

Cite this article

Lošić, Ž.B., Županović, P. Collective mode dispersions of organic chain compounds. centr.eur.j.phys. 8, 283–288 (2010). https://doi.org/10.2478/s11534-009-0113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0113-x

Keywords

Navigation