Skip to main content
Log in

Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The entrained flow of an electrically conducting non-Newtonian, viscoelastic second grade fluid due to an axisymmetric stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equation into an ordinary differential equation. The issue of paucity of boundary conditions is addressed, and an effective numerical scheme has been adopted to solve the obtained differential equation even without augmenting the boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and skin friction coefficient. It is observed that in presence of slip, the velocity decreases with an increase in the magnetic parameter. That is, the Lorentz force which opposes the flow leads to enhanced deceleration of the flow. Moreover, it is interesting to find that as slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sakiadis, Aiche J. 7, 26 (1961)

    Article  Google Scholar 

  2. H. Blasius, Z. Math. Physik 56, 1 (1908)

    Google Scholar 

  3. R. Cortell, Theor. Comp. Fluid Dyn. 21, 435 (2007)

    Article  MATH  Google Scholar 

  4. L. Crane, Z. Angew Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  5. R. Cortell, Phys. Lett A 372, 631 (2008)

    Article  ADS  Google Scholar 

  6. K. Vajravelu, J. Cannon, Appl. Math. Comput. 181, 609 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Ariel, ZAMM-Z. Angew. Math. Me. 83, 844 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Ariel, Comput. Math. Appl. 54, 1169 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. P. Ariel, Comput. Math. Appl. 54, 920 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. P. Ariel, Appl. Math. Comput. 188, 1244 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. C. Wang, Phys. Fluids 27, 1915 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. M. Sajid, T. Hayat, S. Asghar, K. Vajravelu, Arch. Appl. Mech. 78, 127 (2007)

    Article  Google Scholar 

  13. M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Commun. Nonlinear Sci. 13, 2193 (2007)

    Article  Google Scholar 

  14. K. Rajagopal, T. Na, A. Gupta, Rheol. Acta 23, 213 (1984)

    Article  Google Scholar 

  15. H. Andersson, Acta Mech. 95, 227 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Ariel, Acta Mech. 105, 49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. I.-C. Liu, Int. J. Heat Mass Tran. 47, 4427 (2004)

    Article  MATH  Google Scholar 

  18. B. Sahoo, H. Sharma, J. Zhejiang Univ.-SC. A 8, 766 (2007)

    Article  MATH  Google Scholar 

  19. P. Ariel, Int. J. Eng. Sci. 39, 529 (2001)

    Article  Google Scholar 

  20. T. Hayat, M. Sajid, Int. J. Heat Mass Tran. 50, 75 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Hayat, I. Pop, Nonlinear Anal.-Real 9, 1811 (2007)

    Article  MathSciNet  Google Scholar 

  22. C. Navier, Memoire sur les lois du mouvement des fluids Mem. Acad. Sci. Inst. Fr. 6, 389 (1827)

    Google Scholar 

  23. C. Wang, Chem. Eng. Sci. 57, 3745 (2002)

    Article  Google Scholar 

  24. H. Andersson, Acta Mech. 158, 121 (2002)

    Article  MATH  Google Scholar 

  25. C. Wang, Nonlinear Anal.-Real 10, 375 (2007)

    Article  Google Scholar 

  26. P. Ariel, T. Hayat, S. Asghar, Acta Mech. 187, 29 (2006)

    Article  MATH  Google Scholar 

  27. T. Hayat, T. Javed, Z. Abbas, Int. J. Heat Mass Tran. 51, 4528 (2008)

    Article  MATH  Google Scholar 

  28. C. Truesdell, W. Noll, The nonlinear field theories of mechanics, 3rd edition (Springer, 2004)

  29. J. Shercliff, A text book of magnetohydrodynamics (Pergamon press, Oxford, 1965)

    Google Scholar 

  30. B. Sahoo, Commun. Nonlinear Sci. 14, 811 (2009)

    Article  Google Scholar 

  31. B. Sahoo, H. G. Sharma, Bull. Braz. Math. Soc. 38, 595 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Sahoo, H. G. Sharma, Appl. Math. Mech.-Engl. 28, 1467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Sahoo, Commun. Nonlinear Sci., DOI:10.1016/j.cnsns.2009.04.032

  34. B. Sahoo, Commun. Nonlinear Sci. 14, 2982 (2009)

    Article  Google Scholar 

  35. C. Broyden, Math. Comput. 19, 577 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Broyden, Mathematical Programming Series B 87, 209 (2000)

    Article  MathSciNet  Google Scholar 

  37. J. He, Comput. Math. Appl. 57, 410 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Z. Ganji, D. Ganji, Int. J. Nonlin. Sci. Num. 9, 415 (2008)

    MathSciNet  Google Scholar 

  39. A. Ramiar, D. Ganji, and Q. Esmaili, Int. J. Nonlin. Sci. Num. 9, 115 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Sahoo.

About this article

Cite this article

Sahoo, B. Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet. centr.eur.j.phys. 8, 498–508 (2010). https://doi.org/10.2478/s11534-009-0105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0105-x

Keywords

Navigation