Skip to main content
Log in

Acoustically driven charge separation in semiconductor heterostructures sensed by optical spectroscopy techniques

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We demonstrate a method of using a two-layer sandwich structure, which includes a LiNbO3 plate and a semiconductor heterostructure to create an inhomogeneous stress and piezoelectric harmonic potential in the semiconductor. Both the GaAs/AlGaAs quantum well (QW) structures and SiGe/Si heterostructures are attempted, working with and without using a piezoelectric field in the semiconductor layer. The standing-wave fields generated in the semiconductor and the electron and hole distributions driven by the piezoelectric field are computed by finite element method (FEM) techniques. It is experimentally shown that, in a GaAs/AlxGa1-x As asymmetric double quantum well structure, the resonance enhancement of the narrower QW photoluminescence band is observed, which may be explained by the resonant charge transfer between the wider and narrower QWs. It is also shown that the piezoelectric fields quench the pure LO-phonon lines in the Raman spectra, whereas the coupled LO-phonon-plasmon mode strengthens. Experimental results indicate that the charge separation occurs in the plane of the QWs due to the piezoelectric fields. The recombination of carriers in the SiGe/Si heterostructures can be effectively enhanced by the presence of ultrasonic stress, displaying features consistent with varying electrical activity at dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Hamann, W. Vielstich, Electrochemistry (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  2. S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981)

    Google Scholar 

  3. P. Boucaud, S. Sauvage, C. R. Phys. 4, 1133 (2003)

    Article  ADS  Google Scholar 

  4. R. B. Balili, D. W. Snoke, L. Pfeiffer, K. West, Appl. Phys. Lett. 88, 031110 (2006)

    Article  ADS  Google Scholar 

  5. C. Rocke et al., Phys. Rev. Lett. 78, 4099 (1997)

    Article  ADS  Google Scholar 

  6. O. A. Korotchenkov, A. Cantarero, Phys. Rev. B. 75, 085320 (2007)

    Article  ADS  Google Scholar 

  7. T. Makkonen, A. Holappa, J. Ella, M. M. Salomaa, IEEE T. Ultrason. Ferr. 48, 1241 (2001)

    Article  Google Scholar 

  8. N. F. Shulga, A. M. Bolkisev, Vibration of piezoelectric bodies (Naukova dumka, Kyiv, 1990) (in Ukrainian)

    Google Scholar 

  9. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984)

    Google Scholar 

  10. H.-C. Kaiser, J. Rehberg, Nonlinear Anal.-Theor. 41, 33 (2000)

    Article  MathSciNet  Google Scholar 

  11. E. Kapon, Semiconductor Lasers. Fundamentals (Academic Press, San Diego, 1999)

    Google Scholar 

  12. N. G. Einspruch, W. R. Frensley (Eds.), Heterostructures and Quantum Devices (Academic Press, San Diego, 1994)

    Google Scholar 

  13. R. Rapaport et al., Phys. Rev. Lett. 92, 117405 (2004)

    Article  ADS  Google Scholar 

  14. A. García-Cristóbal, A. Cantarero, F. Alsina, P. V. Santos, Phys. Rev. B. 69, 205301 (2004)

    Article  ADS  Google Scholar 

  15. O. C. Zienkiewich, The Finite Element Method in Engineering Science (McGraw-Hill, London, 1971)

    Google Scholar 

  16. O. A. Korotchenkov, O. I. Polovina, V. V. Kurylyuk, IEEE T. Ultrason. Ferr. 54, 2529 (2007)

    Article  Google Scholar 

  17. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 (Wiley, New York, 1973)

    Google Scholar 

  18. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  19. I.-H. Tan, G. L. Snider, L. D. Chang, E. L. Hu, J. Appl. Phys. 68, 4071 (1990)

    Article  ADS  Google Scholar 

  20. D. A. Berlincourt, D. R. Curran, H. Jaffe, In: W. P. Mason (Ed.), Physical Acoustic, Vol. 1, part. A (Academic Press, New York, 1964)

    Google Scholar 

  21. X.-H. Du, Q.-M. Wang, K. Uchino, IEEE T. Ultrason. Ferr. 50, 312 (2003)

    Article  Google Scholar 

  22. D. A. B. Miller et al., Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  23. N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  24. C. Gmachl et al., Rep. Prog. Phys. 64, 533 (2001)

    Article  Google Scholar 

  25. S. Tarucha, K. Ploog, Phys. Rev. B 39, 5353 (1989)

    Article  ADS  Google Scholar 

  26. T. Ohtsuka et al., J. Appl. Phys. 94, 2192 (2003)

    Article  ADS  Google Scholar 

  27. A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, Physics of Low-Dimensional Systems (Nauka, St. Petersburg, 2001) (in Russian)

    Google Scholar 

  28. A. B. Nadtochii, O. A. Korotchenkov, H. G. Grimmeiss, Phys. Rev. B 67 125301 (2003)

    Article  ADS  Google Scholar 

  29. T. Yuasa et al., Phys. Rev. B. 33, 1222 (1986)

    Article  ADS  Google Scholar 

  30. B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, K. West, Nat. Photonics. 1, 701 (2007)

    Article  ADS  Google Scholar 

  31. A. S. Barker Jr., A. J. Sievers, Rev. Mod. Phys. 47, S1 (1975)

    Article  Google Scholar 

  32. O. K. Kim, W. G. Spitzer, J. Appl. Phys. 50, 4362 (1979)

    Article  ADS  Google Scholar 

  33. T. Yuasa et al., Appl. Phys. Lett. 46, 176 (1985)

    Article  ADS  Google Scholar 

  34. P. Y. Yu, M. Cardona, Fundamentals of Semiconductors, Physics and Material Properties (Springer, Berlin, 1999)

    Google Scholar 

  35. P. Giudici, A. R. Goñi, C. Thomsen, K. Eberl, M. Hauser, Phys. Rev. B 73, 045315 (2006)

    Article  ADS  Google Scholar 

  36. E. M. Conwell, Solid State Physics (Academic, New York, 1967)

    Google Scholar 

  37. I. V. Ostrovskii, O. A. Korotchenkov, T. Goto, H. G. Grimmeiss, Phys. Rep. 311, 1 (1999)

    Article  ADS  Google Scholar 

  38. P. M. Mooney, J. O. Chu, Annu. Rev. Mater. Sci. 30, 335 (2000)

    Article  Google Scholar 

  39. J. R. Chelikowsky, Phys. Rev. Lett. 49, 1569 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Korotchenkov.

Additional information

Presented at the International Conference on Semiconductor Materials and Optics, SMMO 2008, October 9–10, 2008, Warsaw, Poland

About this article

Cite this article

Kuryliuk, V., Podolian, A. & Korotchenkov, O. Acoustically driven charge separation in semiconductor heterostructures sensed by optical spectroscopy techniques. centr.eur.j.phys. 8, 65–76 (2010). https://doi.org/10.2478/s11534-009-0094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0094-9

Keywords

PACS (2008)

Navigation