Skip to main content
Log in

Spatially extended populations reproducing logistic map

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We discuss here the conditions that the spatially extended systems (SES) must satisfy to reproduce the logistic map. To address this dilemma we define a 2-D coupled map lattice with a local rule mimicking the logistic formula. We show that for growth rates of kk (k is the accumulation point) the global evolution of the system exactly reproduces the cascade of period doubling bifurcations. However, for k > k , instead of chaotic modes, the cascade of period halving bifurcations is observed. Consequently, the microscopic states at the lattice nodes resynchronize producing dynamically changing spatial patterns. By downscaling the system and assuming intense mobility of individuals over the lattice, the spatial correlations can be destroyed and the local rule remains the only factor deciding the evolution of the whole colony. We found the class of “atomistic” rules for which uncorrelated spatially extended population matches the logistic map both for pre-chaotic and chaotic modes. We concluded that the global logistic behavior can be expected for a spatially extended colony with high mobility of individuals whose microscopic behavior is governed by a specific semi-logistic rule in the closest neighborhood. Conversely, the populations forming dynamically changing spatial clusters behave in a different way than the logistic model and reproduce at least the steady-state fragment of the logistic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kaneko, I. Tsuda, Complex Systems: Chaos and beyond (Springer Verlag, Berlin, 2001) 273

    MATH  Google Scholar 

  2. B. E. Kendall, Theor. Popul. Biol. 54, 11 (1998)

    Article  MATH  Google Scholar 

  3. A. L. Lloyd, J. Theor. Biol. 173, 217 (1995)

    Article  Google Scholar 

  4. R. Law, D. J. Murrell, U. Dieckmann, Ecology 84, 252 (2003)

    Article  Google Scholar 

  5. A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, 2000) 324

  6. E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000)

    Article  ADS  Google Scholar 

  7. I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, Fractals 7, 235 (1999)

    Article  Google Scholar 

  8. E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Ecology 75, 17 (1994)

    Article  Google Scholar 

  9. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998) 341

    MATH  Google Scholar 

  10. S. A. Wolfram, New Kind of Science (Wolfram Media Incorporated, 2002) 1263

  11. Yang Xin-She, Y. Young, In: S. Olariu, A. Y. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications (Chapman & Hall/CRC, Boca Raton, London, New York, 2006) 273

    Google Scholar 

  12. W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 16, 357 (2005)

    Article  MATH  ADS  Google Scholar 

  13. K. Krawczyk, W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 14, 1385 (2003)

    Article  ADS  Google Scholar 

  14. V. Grimm, S. F. Railsback, Individual-Based Modelling and Ecology (Princeton University Press: Princeton, NJ, 2005) 480

    Google Scholar 

  15. D. J. Murrell, U. Dieckmann, R. Law, J. Theor. Biol. 229, 421 (2004)

    Article  Google Scholar 

  16. S. P. Ellner, J. Theor. Biol. 210, 435 (2001)

    Article  Google Scholar 

  17. A. G. Schuster, Deterministic chaos, Polish edition (Wydawnictwo Naukowe PWN, Warszawa, 1993) 274

    Google Scholar 

  18. P. J. S. Franks, Limnol. Oceanogr. 42, 2997 (1997)

    Google Scholar 

  19. P. Topa. W. Dzwinel, D. A. Yuen, Int. J. Mod. Phys. C 17, 1437, (2006)

    Article  MATH  ADS  Google Scholar 

  20. H. R. Thompson, Ecology 37, 391 (1956)

    Article  Google Scholar 

  21. K. Kaneko, Physica D 34, 1 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. G. Pizarro, D. Griffeath, D. R. Noguera, Journal of Environmental Engineering 127, 782 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Dzwinel.

About this article

Cite this article

Dzwinel, W. Spatially extended populations reproducing logistic map. centr.eur.j.phys. 8, 33–41 (2010). https://doi.org/10.2478/s11534-009-0089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0089-6

Keywords

PACS (2008)

Navigation