Skip to main content
Log in

On some hydrodynamical aspects of quantum mechanics

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, MA, 1978)

    MATH  Google Scholar 

  2. V. I. Arnol’d, B. Khesin, Topological Methods in Hydrodynamics (Springer, Berlin, 1998)

    Google Scholar 

  3. A. Ashtekar, T. A. Schilling, In: On Einstein’s path (Springer, New York, 1999) 23

    Google Scholar 

  4. A. Benvegnu, N. Sansonetto, M. Spera, J. Geom. Phys. 51, 229 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. A. Benvegnu, M. Spera, Rev. Math. Phys. 18, 1075 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bott, L. T. Tu, Differential Forms in Algebraic Topology (Springer, Berlin, 1982)

    MATH  Google Scholar 

  7. D. C. Brody, L. P. Hughston, J. Geom. Phys. 38, 19 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. D. Chruscinski, A. Jamiołkowski, Geometric Phases in Classical and Quantum Mechanics (Birkhauser, Boston, 2004)

    MATH  Google Scholar 

  9. R. Cirelli, M. Gatti, A. Manià, J. Geom. Phys. 45, 267 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. Cirelli, A. Mania, L. Pizzocchero, J. Math. Phys. 31, 2891 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. R. Cirelli, L. Pizzocchero, Nonlinearity 3, 1057 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. M. do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992)

    MATH  Google Scholar 

  13. D. G. Ebin, J. E. Marsden, Ann. Math. 92, 102 (1970)

    Article  MathSciNet  Google Scholar 

  14. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, (Springer, Heidelberg, 1987)

    MATH  Google Scholar 

  15. G. Gaeta, M. Spera, Lett. Math. Phys. 16, 187 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Griffiths, J. Harris, Principles of Algebraic Geometry (J. Wiley & Sons, New York, 1978)

    MATH  Google Scholar 

  17. T. Guenault, Basic Superfluids (Taylor & Francis, London, 2003)

    MATH  Google Scholar 

  18. R. C. Gunning, Lectures on Riemann Surfaces (Princeton University Press, Princeton, New Jersey, 1966)

    MATH  Google Scholar 

  19. A. Heslot, Phys. Rev. D 31, 1341 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Joos et al., Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 2003)

    Google Scholar 

  21. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry I (Wiley - Interscience Publishers, New York, 1963)

    MATH  Google Scholar 

  22. L. D. Landau, M. E. Lifšits, Quantum Mechanics (Pergamon, London, 1960)

    Google Scholar 

  23. J. E. Marsden, A. Weinstein, Physica 7 D, 305 (1983)

    MathSciNet  ADS  Google Scholar 

  24. D. McDuff, D. Salamon, Introduction to Symplectic Topology (Clarendon Press, Oxford, 1998)

    MATH  Google Scholar 

  25. R. Narasimhan, Lectures on Riemann surfaces (Birkhauser, Basel, 1994)

    Google Scholar 

  26. V. Penna, M. Spera, J. Geom. Phys. 27, 99 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. A. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    MATH  Google Scholar 

  28. M. Spera, J. Geom. Phys. 12, 165 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. M. Spera, Milan Journal of Mathematics 74, 139 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. E. Taylor, Partial Differential Equations III: Nonlinear Equations (Springer, New York, 1996)

    MATH  Google Scholar 

  31. A. Tyurin, Quantization, Classical and Quantum Field Theory and Theta Functions, CRM Monograph Series (AMS, Providence, RI, 2003)

    Google Scholar 

  32. N. Woodhouse, Geometric Quantization (Clarendon Press, Oxford, 1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Spera.

About this article

Cite this article

Spera, M. On some hydrodynamical aspects of quantum mechanics. centr.eur.j.phys. 8, 42–48 (2010). https://doi.org/10.2478/s11534-009-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0070-4

PACS (2008)

Keywords

Navigation