Skip to main content
Log in

Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

We deal with the test of the general relativistic gravitomagnetic Lense-Thirring effect currently being conducted in the Earth’s gravitational field with the combined nodes Ω of the laser-ranged geodetic satellites LAGEOS and LAGEOS II. One of the most important sources of systematic uncertainty on the orbits of the LAGEOS satellites, with respect to the Lense-Thirring signature, is the bias due to the even zonal harmonic coefficients J of the multipolar expansion of the Earth’s geopotential which account for the departures from sphericity of the terrestrial gravitational potential induced by the centrifugal effects of its diurnal rotation. The issue addressed here is: are the so far published evaluations of such a systematic error reliable and realistic? The answer is negative. Indeed, if the difference ΔJ among the even zonals estimated in different global solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008, AIUB-GRACE01S) is assumed for the uncertainties δJ instead of using their more-or-less calibrated covariances \( \sigma _{J_\ell } \), it turns out that the systematic error δμ in the Lense-Thirring measurement is about 3 to 4 times larger than in the evaluations so far published based on the use of the covariances of one model at a time separately, amounting up to 37% for the pair EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based models yields bias as large as about 25–30%. The major discrepancies still occur for J 4; J 6 and J 8, which are just to which the zonals the combined LAGEOS/LAGOES II nodes are most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mashhoon, In: L. Iorio (Ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise (NOVA, Hauppauge, 2007) 29

    Google Scholar 

  2. M. L. Ruggiero, A. Tartaglia, Nuovo Cimento B 117, 743 (2002)

    ADS  Google Scholar 

  3. G. E. Pugh, WSEG Research Memorandum No. 11, 1959

  4. L. Schiff, Phys. Rev. Lett. 4, 215 (1960)

    Article  ADS  Google Scholar 

  5. H. Pfister, Gen. Relat. Gravit. 39, 1735 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. J. Lense, H. Thirring, Phys. Z. 19, 156 (1918)

    Google Scholar 

  7. C. W. F. Everitt, In: B. Bertotti (Ed.), Proc. Int. School Phys. “Enrico Fermi” Course LVI (New Academic Press, New York, 1974) 331

    Google Scholar 

  8. C. W. F. Everitt et al., In: C. Lämmerzahl, C. W. F. Everitt, F. W. Hehl (Ed.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space (Springer, Berlin, 2001) 52

    Chapter  Google Scholar 

  9. I. Ciufolini, E. C. Pavlis, Nature 431, 958 (2004)

    Article  ADS  Google Scholar 

  10. M. R. Pearlman, J. J. Degnan, J. M. Bosworth, Adv. Space Res. 30, 135 (2002)

    Article  Google Scholar 

  11. R. A. Van Patten, C. W. F. Everitt, Phys. Rev. Lett. 36, 629 (1976)

    Article  ADS  Google Scholar 

  12. R. A. Van Patten, C. W. F. Everitt, Celest. Mech. Dyn. Astr. 13, 429 (1976)

    ADS  Google Scholar 

  13. I. Ciufolini, Phys. Rev. Lett. 56, 278 (1986)

    Article  ADS  Google Scholar 

  14. J. C. Ries, R. J. Eanes, M. M. Watkins, B. Tapley, Joint NASA/ASI Study on Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite CSR-89-3, The University of Texas at Austin: Center for Space Research (Austin, TX, 1989)

    Google Scholar 

  15. I. Ciufolini et al., LARES Phase A, University La Sapienza (Rome, Italy, 1998)

  16. L. Iorio, D. M. Lucchesi, I. Ciufolini, Classical Quant. Grav. (19), 4311 (2002)

  17. D. M. Lucchesi, A. Paolozzi, In: XVI Congresso Nazionale AIDAA, 24–28 Sept. 2001, Palermo, Italy

  18. L. Iorio, Classical Quant. Grav. 19, L175 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. I. Ciufolini, arXiv:gr-qc/0412001v3

  20. I. Ciufolini, arXiv:gr-qc/0609081v1

  21. L. Iorio, Journal of Cosmology and Astroparticle Physics 7, 8 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Iorio, Planet. Space Sci. 55, 1198 (2007)

    Article  ADS  Google Scholar 

  23. L. Iorio, Europhys. Lett. 80, 40007 (2007)

    Article  ADS  Google Scholar 

  24. L. Iorio, Adv. Space Res. 43, 1148 (2009)

    Article  ADS  Google Scholar 

  25. L. Cugusi, E. Proverbio, Astron. Astrophys. 69, 321 (1978)

    ADS  Google Scholar 

  26. I. Ciufolini, D. M. Lucchesi, F. Vespe, A. Mandiello, Nuovo Cimento A 109, 575 (1996)

    Article  ADS  Google Scholar 

  27. I. Ciufolini, Nuovo Cimento A 109, 1709 (1996)

    Article  ADS  Google Scholar 

  28. I. Ciufolini, E. C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Pérez-Mercader, Science 279, 2100 (1998)

    Article  ADS  Google Scholar 

  29. F. G. Lemoine et al., NASA/TP-1998-206861 (1998)

  30. L. Iorio, Celest. Mech. Dyn. Astr. 86, 277 (2003)

    Article  MATH  ADS  Google Scholar 

  31. J. C. Ries, R. J. Eanes, B. D. Tapley, In: R. J. Ruffini, C. Sigismondi (Eds.), Nonlinear Gravitodynamics. The Lense-Thirring Effect (World Scientific, Singapore, 2003) 201

    Google Scholar 

  32. J. C. Ries, R. J. Eanes, B. D. Tapley, G. E. Peterson, In: R. Noomen, S. Klosko, C. Noll, M. Pearlman (Eds.), Proc. 13th Int. Laser Ranging Workshop, NASA CP (2003-212248 (NASA Goddard, Greenbelt, 2003)

    Google Scholar 

  33. A. Milani, A. M. Nobili, P. Farinella, Non-gravitational perturbations and satellite geodesy (Adam Hilger, Bristol, 1987)

    MATH  Google Scholar 

  34. P. Inversi, F. Vespe, Adv. Space Res. 14, 73 (1994)

    Article  ADS  Google Scholar 

  35. F. Vespe, Adv. Space Res. 23, 699 (1999)

    Article  ADS  Google Scholar 

  36. D. M. Lucchesi, Planet. Space Sci. 49, 447 (2001)

    Article  ADS  Google Scholar 

  37. D. M. Lucchesi, Planet. Space Sci. 50, 1067 (2002)

    Article  ADS  Google Scholar 

  38. D. M. Lucchesi, Geophys. Res. Lett. 30, 1957 (2003)

    Article  ADS  Google Scholar 

  39. D. M. Lucchesi, Celest. Mech. Dyn. Astr. 88, 269 (2004)

    Article  MATH  ADS  Google Scholar 

  40. D. M. Lucchesi et al., Planet. Space Sci. 52, 699 (2004)

    Article  ADS  Google Scholar 

  41. Ch. Reigber et al., J. Geodyn. 39 1 (2005)

    Article  ADS  Google Scholar 

  42. J. C. Ries, R. J. Eanes, M. M. Watkins, In: S. Schillak (Ed.), 16th Int. Laser Ranging Workshop, 13–17 Oct. 2008, Poznan, Poland

  43. E.C. Pavlis, In: R. Cianci, R. Collina, M. Francaviglia, P. Fré (Eds.), Recent Developments in General Relativity: Proc. 14th SIGRAV Conf. on General Relativity Gravitational Physics, 18–22 Sept. 2000, Genova, Italy (Springer, Milan, 2000) 217

    Google Scholar 

  44. L. Iorio, A. Morea, Gen. Relat. Gravit. 36, 1321 (2004)

    Article  MATH  ADS  Google Scholar 

  45. W. M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)

    Google Scholar 

  46. L. Iorio (Ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise (NOVA, Hauppauge, 2007)

    Google Scholar 

  47. I. Ciufolini, E. C. Pavlis, New Astron. 10, 636 (2005)

    Article  ADS  Google Scholar 

  48. I. Ciufolini, E. C. Pavlis, R. Peron, New Astron. 11, 527 (2006)

    Article  ADS  Google Scholar 

  49. L. Iorio, New Astron. 10, 603 (2005)

    Article  ADS  Google Scholar 

  50. L. Iorio, J. Geodesy 80, 128, (2006)

    Article  MATH  ADS  Google Scholar 

  51. L. Iorio, Gen. Relat. Gravit. 38, 523 (2006)

    Article  MATH  ADS  Google Scholar 

  52. L. Iorio, Planet. Space Sci. 55, 503 (2007)

    Article  ADS  Google Scholar 

  53. D. M. Lucchesi, Int. J. Mod. Phys. D 14, 1989 (2005)

    Article  MATH  ADS  Google Scholar 

  54. D. M. Lucchesi, Adv. Space Res. 39, 1559 (2007)

    Article  ADS  Google Scholar 

  55. F. J. Lerch et al., J. Geophys. Res. 99(B2), 2815 (1994)

    Article  ADS  Google Scholar 

  56. B. D. Tapley et al., In: American Geophysical Union, Fall Meeting 2007, abstract #G42A-03

  57. C. Förste et al., In: EGU General Assembly 2005, 24–29 April 2005, Vienna, Austria

  58. B. D. Tapley et al. J. Geodesy 79, 467 (2005)

    Article  ADS  Google Scholar 

  59. T. Mayer-Gürr, A. Eicker, K.-H. Ilk, In: 1st Int. Symp. of the International Gravity Field Service “GRAVITY FIELD OF THE EARTH”, 28 August–1 September 2006, Istanbul, Turkey

  60. T. Mayer-Gürr, In: Joint Int. GSTMDFG SPP Symp., 15–17 Oct. 2007, Potsdam, Germany

  61. N. K. Pavlis et al., In: 2008 General Assembly of the European Geosciences Union, 13–18 April 2008, Vienna, Austria

  62. A. Jäggi, G. Beutler, L. Gmervart, In: IAG Symposium on “Gravity, Geoid, Earth Observation 2008”, 23–27 June 2008, Chania, Greece

  63. D. M. Lucchesi, G. Balmino, Planet. Space Sci. 54, 581 (2006)

    ADS  Google Scholar 

  64. L. Combrinck, S. Schillak (Ed.), 16th Int. Laser Ranging Workshop, 13–17 Oct. 2008, Poznan, Poland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

About this article

Cite this article

Iorio, L. Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test. centr.eur.j.phys. 8, 25–32 (2010). https://doi.org/10.2478/s11534-009-0060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0060-6

PACS (2008)

Keywords

Navigation