Skip to main content
Log in

Stationary inverted Lyman populations and free-free and bound-free emission of lower-energy state hydride ion formed by an exothermic catalytic reaction of atomic hydrogen and certain group I catalysts

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Rb+ to Rb2+ and 2K+ to K + K2+ each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. The presence of these gaseous ions with thermally dissociated hydrogen formed a plasma having strong VUV emission with a stationary inverted Lyman population. Significant Balmer α line broadening of 18 and 9 eV was observed from a rt-plasma of hydrogen with KNO3, and RbNO3, respectively, compared to 3 eV from a hydrogen microwave plasma. The reaction was exothermic since excess power of about 20 mW/cc was measured by Calvet calorimetry. We propose an energetic catalytic reaction involving a resonance energy transfer between hydrogen atoms and Rb+ or 2K+ to form a very stable novel hydride ion. Its predicted binding energy of 3.0471 eV with the fine structure was observed at 4071 Å, and its predicted bound-free hyperfine structure lines matched those observed for about 40 lines to within.01 percent. Characteristic emission from each catalyst was observed. This catalytic reaction may pump a CW HI laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zimmermann, R. Kallenbach, T. W. Hansch, Phys. Rev. Lett. 65, 571 (1990)

    Article  ADS  Google Scholar 

  2. T. Ibuki, Chem. Phys. Lett. 94, 169 (1990)

    Google Scholar 

  3. R. Mills Ray, R. M. Mayo, Appl. Phys. Lett. 82, 1679 (2003)

    Article  ADS  Google Scholar 

  4. L. I. Gudzenko, L. A. Shelepin, Sov. Phys. JEPT-USSR 18, 998 (1963)

    Google Scholar 

  5. S. Suckewer, H. Fishman, J. Appl. Phys. 51, 1922 (1980)

    Article  ADS  Google Scholar 

  6. W. T. Silfvast, O. R. Wood, J. Opt. Soc. Am. B 4, 609 (1987)

    Article  ADS  Google Scholar 

  7. H. Akatsuka, M. Suzuki, Phys. Rev. E 49, 1534 (1994)

    Article  ADS  Google Scholar 

  8. R. Mills, M. Nansteel Ray, IEEE T. Plasma Sci. 30, 639 (2002)

    Article  ADS  Google Scholar 

  9. R. Mills, M. Nansteel Ray, New J. Phys. 4, 70.1 (2002)

    Google Scholar 

  10. R. Mills, J. Dong, Y. Lu, Int. J. Hydrogen Energ. 25, 919 (2000)

    Article  Google Scholar 

  11. R. Mills, M. Nansteel, P. Ray, J. Plasma Phys 69, 131 (2003)

    Article  ADS  Google Scholar 

  12. R. Mills, The Grand Unified Theory of Classical Quantum Mechanics, October 2007, www.blacklightpower.com/theory/bookdownload.shtml

  13. R. L. Mills, Phys. Essays 16, 433 (2003)

    Article  Google Scholar 

  14. R. L. Mills, Phys. Essays 20, 403 (2007)

    Article  Google Scholar 

  15. R. L. Mills, Phys. Essays 18, 321 (2005)

    Article  Google Scholar 

  16. R. L. Mills, Phys. Essays 17, 342 (2004)

    Article  Google Scholar 

  17. R. L. Mills, Phys. Essays 19, 225 (2006)

    Article  Google Scholar 

  18. R. L. Mills, Phys. Essays 21, 103 (2008)

    Article  Google Scholar 

  19. R. L. Mills, Annales de la Fondation Louis de Broglie 30, 129 (2005)

    Google Scholar 

  20. R. Mills, Int. J. Hydrogen Energ. 27, 565 (2002)

    Article  Google Scholar 

  21. R. Mills, Int. J. Hydrogen Energ. 26, 1059 (2001)

    Article  Google Scholar 

  22. R. Mills, Int. J. Hydrogen Energ. 25, 1171 (2000)

    Article  Google Scholar 

  23. N. V. Sidgwick, The Chemical Elements and Their Compounds, Volume I (Clarendon Press, Oxford, 1950) 17

    Google Scholar 

  24. M. D. Lamb, Luminescence Spectroscopy (Academic Press, London, 1978) 68

    Google Scholar 

  25. R. L. Mills et al., Int. J. Hydrogen Energ. 34, 573 (2009)

    Article  Google Scholar 

  26. R. L. Mills et al., Int. J. Hydrogen Energ. 32, 2988 (2007)

    Article  MathSciNet  Google Scholar 

  27. R. Mills et al., Int. J. Hydrogen Energy 32, 2573 (2007)

    Article  MathSciNet  Google Scholar 

  28. R. Mills et al., European Physical Journal-Applied Physics 28, 83 (2004)

    Article  ADS  Google Scholar 

  29. R. L. Mills, J. He, M. Nansteel, B. Dhandapani, Int. J. Global Energy, Special Edition in Energy Systems 28, 304 (2007)

    Article  Google Scholar 

  30. H. Conrads, R. Mills, Th. Wrubel, Plasma Sources Sci. T. 12, 389 (3003)

    Article  ADS  Google Scholar 

  31. J. Phillips, R. L. Mills, X. Chen, J. Appl. Phys. 96, 3095 (2004)

    Article  ADS  Google Scholar 

  32. R. L. Mills, X. Chen Ray, J. He, B. Dhandapani, Thermochim. Acta 406, 35 (2003)

    Article  Google Scholar 

  33. R. Mills et al., Int. J. Hydrogen Energ. 26, 339 (2001)

    Article  Google Scholar 

  34. R. Mills, B. Dhandapani, M. Nansteel, J. He, A. Voigt, Int. J. Hydrogen Energ. 26, 965 (2001)

    Article  Google Scholar 

  35. R. Mills, B. Dhandapani, N. Greenig, J. He, Int. J. Hydrogen Energ. 25, 1185 (2000)

    Article  Google Scholar 

  36. R. L. Mills Ray, J. Phys. D Appl. Phys. 36, 1535 (2003)

    Article  ADS  Google Scholar 

  37. R. L. Mills Ray, B. Dhandapani, M. Nansteel, X. Chen, J. He, J Mol. Struct. 643, 43 (2002)

    Article  ADS  Google Scholar 

  38. R. Mills Ray, Int. J. Hydrogen Energ. 27, 301 (2002)

    Article  Google Scholar 

  39. R. L. Mills Ray, Int. J. Hydrogen Energ. 28, 825 (2003)

    Article  Google Scholar 

  40. R. Mills, Int. J. Hydrogen Energ. 26, 1041 (2001)

    Article  ADS  Google Scholar 

  41. R. L. Mills Ray, B. Dhandapani, R. M. Mayo, J. He, J. Appl. Phys. 92, 7008 (2002)

    Article  ADS  Google Scholar 

  42. R. L. Mills Ray, B. Dhandapani, J. He, IEEE T. Plasma Sci. 31, 338 (2003)

    Article  ADS  Google Scholar 

  43. R. L. Mills Ray, New J. Phys. 4, 22.1 (2002)

    Google Scholar 

  44. R. L. Mills, B. Dhandapani, K. Akhtar, Int. J. Hydrogen Energ. 33, 802 (2008)

    Article  Google Scholar 

  45. R. Mills Ray, B. Dhandapani, J. Plasma Phys. 72, 469 (2006)

    Article  ADS  Google Scholar 

  46. J. Phillips, C.-K. Chen, K. Akhtar, B. Dhandapani, R. Mills, Int. J. Hydrogen Energ. 32, 3010 (2007)

    Article  Google Scholar 

  47. R. L. Mills et al., J. Plasma Phys. 71, 877 (2005)

    Article  ADS  Google Scholar 

  48. R. Mills Ray, R. M. Mayo, IEEE T. Plasma Sci. 31, 236 (2003)

    Article  ADS  Google Scholar 

  49. R. L. Mills Ray, J. Phys. D Appl. Phys. 36, 1504 (2003)

    Article  ADS  Google Scholar 

  50. R. Mills Ray, R. M. Mayo, Appl. Phys. Lett. 82, 1679 (2003)

    Article  ADS  Google Scholar 

  51. F. F. Chen, In: R. H. Huddleston, S. L. Leonard (Eds.), Plasma Diagnostic Techniques (Academic Press, NY, 1965)

    Google Scholar 

  52. M. C. Bradford, J. Phillips, J. Klanchar, Rev. Sci. Instrum. 66, 171 (1995)

    Article  ADS  Google Scholar 

  53. C. J. Hardy, B. O. Field, J. Chem. Soc., 5130 (1963)

  54. R. Kelly, J. Phys. Chem. Ref. Data 16, 418 (1987)

    Google Scholar 

  55. S. B. Radovanov, K. Dzierzega, J. R. Roberts, J. K. Olthoff, Appl. Phys. Lett. 66, 2637 (1995)

    Article  ADS  Google Scholar 

  56. K. R. Lykke, K. K. Murray, W. C. Lineberger, Phys. Rev. A 43, 6104 (1991)

    Article  ADS  Google Scholar 

  57. M. Stix, The Sun (Springer-Verlag, Berlin, 1991) 136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randell L. Mills.

About this article

Cite this article

Mills, R.L., Good, W., Jansson, P.M. et al. Stationary inverted Lyman populations and free-free and bound-free emission of lower-energy state hydride ion formed by an exothermic catalytic reaction of atomic hydrogen and certain group I catalysts. centr.eur.j.phys. 8, 7–16 (2010). https://doi.org/10.2478/s11534-009-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0052-6

Keywords

PACS (2008)

Navigation