Skip to main content
Log in

Theoretical modelling of surface phonons

  • Review Article
  • Published:
Central European Journal of Physics

Abstract

We present a mini review of progress made towards theoretical modelling of surface phonons. We outline the essential ingredients of two theoretical methods, viz. an adiabatic bond charge method for semiconductor surfaces and the ab-initio density-functional perturbation method for solid surfaces in general. From the results of theoretical calculations we establish trends and criteria for the existence of localized phonon modes on group-IV(001) and III-V(110) semiconductor surfaces. We further obtain signatures of characteristic vibrational modes which develop during dissociative molecular adsorption on Si(001) surfaces. The results are compared with available experimental measurements. Some remarks are forwarded regarding manipulation of surface phonon modes for scientific advances and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz, L. M. Rosenzweig, Zh. Eksp. Teor. Fiz.+ 18, 1012 (1948)

    Google Scholar 

  2. J. P. Toennies, In: W. Kress, F. W. de Wette (Eds.), Surface Phonons (Springer-Verlag, Berlin, 1991)

    Google Scholar 

  3. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 43, 7231 (1991)

    Article  ADS  Google Scholar 

  4. W. Weber, Phys. Rev. Lett. 33, 371 (1974)

    Article  ADS  Google Scholar 

  5. K. C. Rustagi, W. Weber, Solid State Commun. 18, 673 (1976)

    Article  ADS  Google Scholar 

  6. H. M. Tütüncu, G. P. Srivastava, Phys. Rev. B 53, 15675 (1996)

    Google Scholar 

  7. G. P. Srivastava, Theoretical Modelling of Semiconductor Surfaces (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  8. S. Baroni, S. de Gironcoli, A. Dal. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  9. P. N. Keating, Phys. Rev. 145, 637 (1966)

    Article  ADS  Google Scholar 

  10. H. M. Tütüncü, S. Bağcl, G. P. Srivastava, Phys. Rev. B 70, 195401 (2004)

    Google Scholar 

  11. S. Thachepanetal, Phys. Rev. B 68, 033310 (2003)

    Article  ADS  Google Scholar 

  12. H. M. Tütüncü, S. Duman, S. Bağcı, G. P. Srivastava, Phys. Rev. B72, 085327 (2005)

  13. M. D. Pashley, Phys. Rev. B40, 10481 (1989)

  14. H. Nienhaus, W. Mnch, Surf. Sci. 328, L561 (1995)

    Article  Google Scholar 

  15. H. M. Tütüncü, PhD Thesis, University of Exeter (Exeter, United Kingdom, 1998)

    Google Scholar 

  16. H. M. Tütüncü, R. Miotto, G. P. Srivastava, Phys. Rev. B 62, 15797 (2000)

    Google Scholar 

  17. R. Miotto, G. P. Srivastava, R. H. Miwa, A. C. Ferraz, J. Chem. Phys. 114, 9549 (2001)

    Article  ADS  Google Scholar 

  18. C. Bater, M. Sanders, J. H. Craig Jr., Surf. Interface Anal. 29, 208 (2000)

    Article  Google Scholar 

  19. M. Fiujisawa, Y. Taguchi, Y. Kuwahara, M. Onchi, M. Nishijima, Phys. Rev. B 39, 12918 (1989)

    Google Scholar 

  20. Y. Widjaja, M. M. Mysinger, C. B. Musgrave, J. Phys. Chem. B 104, 2527 (2000)

    Article  Google Scholar 

  21. J. Shan, Y. Wang, R. J. Hamers, J. Phys. Chem. 100, 4961 (1996)

    Article  Google Scholar 

  22. M. L. Colaianni, P. J. Chen, J. T. Yates Jr., J. Vac. Sci. Technol. A 12, 2995 (1994)

    Article  ADS  Google Scholar 

  23. M. Nishijima, J. Yoshinoby, H. Tsuda, M. Onchi, Surf. Sci. 192, 383 (1987)

    Article  ADS  Google Scholar 

  24. C. Huang, W. Widdra, X. S. Wang, W. H. Weinberg, J. Vac. Sci. Technol. A 11, 2250 (1993)

    Article  ADS  Google Scholar 

  25. W. Widdra, C. Huang, S. I. Yi, W. H. Weinberg, J. Chem. Phys. 105, 5605 (1996)

    Article  ADS  Google Scholar 

  26. R. Miotto, A. C. Ferraz, G. P. Srivastava, Phys. Rev. B 65, 075401 (2002)

    Google Scholar 

  27. A. J. Reddyetal, PhysicaB 273–274, 468 (1999)

    Google Scholar 

  28. T. L. Niederhauser et al., Langmuir 17, 5889 (2001)

    Article  Google Scholar 

  29. C. Shannon, A. Campion, Surf. Sci. 227, 219 (1990)

    Article  ADS  Google Scholar 

  30. Ch. Kleint, S. M. A. El Halim, Surf. Sci. 247, 375 (1991)

    Article  ADS  Google Scholar 

  31. W. Ehrley, R. Butz, and S. Mantl, Surf. Sci. 248, 193 (1991)

    Article  ADS  Google Scholar 

  32. M. P. Casalettoetal, Surf. Sci. 505, 251 (2002)

    Article  ADS  Google Scholar 

  33. L. Zhang, A. J. Carman, S. M. Casey, J. Phys. Chem. B 107, 8424 (2003)

    Article  Google Scholar 

  34. R. Miotto, G. P. Srivastava, A. C. Ferraz, Surf. Sci. 575, 287 (2005)

    Article  ADS  Google Scholar 

  35. J. Furthmüller, J. Hafner G. Kresse Phys. Rev. B 53, 7334 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyaneshwar P. Srivastava.

About this article

Cite this article

Srivastava, G.P., Tütüncü, H.M. Theoretical modelling of surface phonons. centr.eur.j.phys. 7, 209–219 (2009). https://doi.org/10.2478/s11534-009-0032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0032-x

Keywords

PACS (2008)

Navigation