Advertisement

Central European Journal of Physics

, Volume 7, Issue 4, pp 791–799 | Cite as

Analytical approximate solutions for two-dimensional viscous flow through expanding or contracting gaps with permeable walls

  • Saeed DinarvandEmail author
  • Mohammad Mehdi Rashidi
  • Ahmad Doosthoseini
Research Article

Abstract

In this paper, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions is solved analytically by using the homotopy analysis method (HAM). Graphical results are presented to investigate the influence of the nondimensional wall dilation rate α and permeation Reynolds number Re on the velocity, normal pressure distribution and wall shear stress. The obtained solutions, in comparison with the numerical solutions, demonstrate remarkable accuracy. The present problem for slowly expanding or contracting walls with weak permeability is a simple model for the transport of biological fluids through contracting or expanding vessels.

Keywords

expanding or contracting walls nondimensional wall dilation rate permeation Reynolds number homotopy analysis method (HAM) convergence 

PACS (2008)

68.37.Hk 68.37.Ps 78.68.+m 81.15.Ef 81.65.Cf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. H. Nayfeh, Introduction to perturbation techniques (Wiley, New York, 1979)Google Scholar
  2. [2]
    R. H. Rand, D. Armbruster, Perturbation methods, bifurcation theory and computer algebraic (Springer-Verlag, New York, 1987)Google Scholar
  3. [3]
    A. M. Lyapunov, General problem on stability of motion (English translation), (Taylor and Francis, London, 1992)Google Scholar
  4. [4]
    A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures (Mashinostroyenie, Moscow, 1990)Google Scholar
  5. [5]
    G. Adomian, Solving frontier problems of physics: the Decomposition method, (Kluwer Academic Publishers, Dordrecht, 1994)zbMATHGoogle Scholar
  6. [6]
    S. J. Liao, PhD Thesis, Shanghai Jiao Tong University (Shanghai, China 1992)Google Scholar
  7. [7]
    S. J. Liao, J. Fluid Mech. 385, 101 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    S. J. Liao, Int. J. Nonlinear Mech. 34, 759 (1999)zbMATHCrossRefADSGoogle Scholar
  9. [9]
    S. J. Liao, J. Fluid Mech. 488, 189 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [10]
    S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton 2003)Google Scholar
  11. [11]
    S. J. Liao, Appl. Math. Comput. 147, 499 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. J. Liao, Appl. Math. Comput. 169, 1186 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Sajid, T. Hayat, S. Asghar, Nonlinear Dynam. 50, 27 (2007)CrossRefMathSciNetGoogle Scholar
  14. [14]
    F. M. Allan, Appl. Math. Comput. 190, 6 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Abbasbandy, Phys. Lett. A, 360, 109, (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S. Abbasbandy, Chemical. Eng. J. (in press)Google Scholar
  17. [17]
    F. M. Allan, Chaos Soliton. Fract. (in press)Google Scholar
  18. [18]
    F. M. Allan, M. I. Syam, J. Comput. Appl. Math., 182, 362, (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    T. Hayat, T. Javed, Phys. Lett. A, 370, 243, (2007)CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    M. Sajid, A. M. Siddiqui, T. Hayat, Int. J. Eng. Sci., 45, 381, (2007)CrossRefGoogle Scholar
  21. [21]
    T. Hayat, M. Sajid, Int. J. Heat Mass Tran., 50, 75, (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    T. Hayat, Naveed Ahmed, M. Sajid, S. Asghar, Comput. Math. Appl., 54, 407, (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    T. Hayat, M. Sajid, M. Ayub, Communications in Nonlinear Science and Numerical Simulation, 12, 1481, (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. [24]
    Y. Bouremel, Communications in Nonlinear Science and Numerical Simulation, 12, 714, (2007)zbMATHCrossRefADSGoogle Scholar
  25. [25]
    M. M. Rashidi, G. Domairry, S. Dinarvand, Communications in Nonlinear Science and Numerical Simulation, 14, 708, (2009)CrossRefADSGoogle Scholar
  26. [26]
    Z. Ziabakhsh, G. Domairry, Communications in Nonlinear Science and Numerical Simulation, 14, 1284, (2009)CrossRefADSGoogle Scholar
  27. [27]
    J. Cheng, S. J. Liao, R. N. Mohapatra, K. Vajravelu, J. Math. Anal. Appl., 343, 233, (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    T. T. Zhang, L. Jia, Z. C. Wang, X. Li, Phys. Lett. A, 372, 3223, (2008)CrossRefADSGoogle Scholar
  29. [29]
    H. N. Chang, J. S. Ha, J. K. Park, I. H. Kim, H. D. Shin, J. Biomech., 22, 1257, (1989)CrossRefGoogle Scholar
  30. [30]
    J. Majdalani, C. Zhou, C. A. Dawson, J. Biomech., 35, 1399, (2002)CrossRefGoogle Scholar
  31. [31]
    E. C. Dauenhauer, J. Majdalani, AIAA J., 44, 99, (1999)Google Scholar
  32. [32]
    J. Majdalani, C. Zhou, ZAMM-Z. Angew. Math. Me., 83, 181, (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Y. Z. Boutros, M. B. Abd-el-Malek, N. A. Badran, H. S. Hassan, J. Comput. Appl. Math. (in press)Google Scholar
  34. [34]
    A. S. Berman, J. Appl. Phys., 24, 1232, (1953)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Saeed Dinarvand
    • 1
    Email author
  • Mohammad Mehdi Rashidi
    • 1
  • Ahmad Doosthoseini
    • 1
  1. 1.Mechanical Engineering DepartmentEngineering Faculty of Bu-Ali Sina UniversityHamedanIran

Personalised recommendations