Skip to main content
Log in

Interface resistive switching effects in bulk manganites

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

A physical mechanism driving the resistance switching in heterocontacts, formed by a metal counterelectrode and electrically conducting bulk perovskite manganites, is discussed. The nature of the inelastic, charge-hopping transport inside insulating and strongly inhomogeneous metal/manganite interfaces is studied theoretically. Comparison with measured current-voltage characteristics for a La0.67Ca0.33MnO3/Ag heterostructure in a high-resistance state reveals the presence of one or more charge traps along a conduction path within the interface. In a low-resistance state the main charge-transferring events are direct tunneling ones. The analysis of electrical noise measurements for a La0.82Ca0.18MnO3 single crystal in three different charge-transport regimes shows scattering centers with a broad, flat spectrum of excitation states, independent of manganite electrical and/or magnetic characteristics. All of these results are consistent with an oxygen-drift model for a bistable resistance state in perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Dearnaley, A. M. Stoneham, D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  ADS  Google Scholar 

  2. R. Waser, M. Aono, Nature Materials 6, 833 (2007)

    Article  ADS  Google Scholar 

  3. A. Sawa, Materials Today 11, 28 (2008)

    Article  ADS  Google Scholar 

  4. D. B. Strukov, K. K. Likharev, Journal of Nanoscience and Nanotechnology 7, 151 (2007)

    Google Scholar 

  5. K. K. Likharev, Microelectr. J. 39, 177 (2008)

    Article  Google Scholar 

  6. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  7. A. Plecenik, M. Grajcar, P. Seidel, S. Takacs, A. Matthes, M. Zuzcak, A. Beaaka, Physica C 301, 234 (1998)

    Article  ADS  Google Scholar 

  8. N. A. Tulina, Phys.-Usp.+ 50, 1171 (2007)

    Article  ADS  Google Scholar 

  9. M. Hamaguchi, K. Aoyama, S. Asanuma, Y. Uesu, T. Katsufuji, Appl. Phys. Lett. 88, 142608 (2006)

    Article  Google Scholar 

  10. Y. Watanabe et al., Appl. Phys. Lett. 78, 3738 (2001)

    Article  ADS  Google Scholar 

  11. Ch. Jooss et al., Phys. Rev. B 77, 132409 (2008)

    Article  ADS  Google Scholar 

  12. V. M. Svistunov et al., Mod. Phys. Lett. B 22, 2811 (2008)

    Article  MATH  ADS  Google Scholar 

  13. X. D. Wu et al., Appl. Phys. Lett. 90, 242110 (2007)

    Article  ADS  Google Scholar 

  14. M. Janousch et al., Adv. Mater. 19, 2232 (2007)

    Article  Google Scholar 

  15. M. Quintero, P. Levy, A. G. Leyva, M. J. Rozenberg, Phys. Rev. Lett. 98, 116601 (2007)

    Article  ADS  Google Scholar 

  16. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, A. Ignatiev, Phys. Rev. Lett. 98, 146403 (2007)

    Article  ADS  Google Scholar 

  17. A. Plecenik et al., Appl. Phys. Lett. 81, 859 (2002)

    Article  ADS  Google Scholar 

  18. H. L. Ju et al., Phys. Rev. B 51, 6143 (1995)

    Article  ADS  Google Scholar 

  19. K. Yakushiji, S. Mitani, F. Ernult, K. Takanashi, H. Fujimori, Phys. Rep. 451, 1 (2007)

    Article  ADS  Google Scholar 

  20. T. V. Ramakrishnan, J. Phys.-Condens. Mat. 19, 125211 (2007)

    Article  ADS  Google Scholar 

  21. Y. Xu, D. Ephron, M. R. Beasley, Phys. Rev. B 52, 2843 (1995)

    Article  ADS  Google Scholar 

  22. Y. Ymry, O. Entin-Wohlman, A. Aharony, Europhys. Lett. 72, 263 (2005)

    Article  ADS  Google Scholar 

  23. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, Oxford, 1985)

    Google Scholar 

  24. E. G. Maksimov, Phys.-Usp.+ 50, 1171 (2007)

    Article  Google Scholar 

  25. C. P. Adams et al., Phys. Rev. B 70, 134414 (2004)

    Article  ADS  Google Scholar 

  26. L. I. Glazman, K. A. Matveev, Sov. Phys. JETP 67, 1276 (1988)

    Google Scholar 

  27. J. B. Philipp, L. Alff, A. Marx, R. Gross, Phys. Rev. B 66, 224417 (2002)

    Article  ADS  Google Scholar 

  28. S. Wirth, A. Anane, B. Raquet, S. von Molnár, J. Magn. Magn. Mater. 290–291, 1186 (2005)

    Google Scholar 

  29. A. Ghosh, A. K. Raychaudhuri, R. Sreekala, M. Rajeswari, T. Venkatesan, Phys. Rev. B 58, R14665 (1998)

    Article  ADS  Google Scholar 

  30. P. Dutta, P. M. Horn, Rev. Mod. Phys. 53, 497 (1981)

    Article  ADS  Google Scholar 

  31. E. Pytte, Y. Imry, Phys. Rev. B 35, 1465 (1987)

    Article  ADS  Google Scholar 

  32. M. Quintero, A. G. Leyva, P. Levy, Appl. Phys. Lett. 86, 242102 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Belogolovskii.

About this article

Cite this article

Belogolovskii, M.A. Interface resistive switching effects in bulk manganites. centr.eur.j.phys. 7, 304–309 (2009). https://doi.org/10.2478/s11534-009-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-009-0012-1

Keywords

PACS (2008)

Navigation