Advertisement

Central European Journal of Physics

, Volume 7, Issue 1, pp 114–122 | Cite as

A reliable treatment of the homotopy analysis method for viscous flow over a non-linearly stretching sheet in presence of a chemical reaction and under influence of a magnetic field

  • Saeed DinarvandEmail author
Research Article
  • 50 Downloads

Abstract

The similarity solution for the steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field gives a system of non-linear ordinary differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the Homotopy Analysis Method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the Schmidt number, magnetic parameter and chemical reaction parameter on the velocity and concentration fields. It is noted that the behavior of the HAM solution for concentration profiles is in good agreement with the numerical solution given in reference [A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)].

Keywords

non-linear stretching chemical reaction magnetic field concentration homotopy analysis method 

PACS (2008)

02.60.Lj 02.90.+p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.C. Sakiadis, AICHE J. 7, 26 (1961)CrossRefGoogle Scholar
  2. [2]
    F.K. Tsou, E.M. Sparrow, R.J. Glodstein, Int. J. Heat Mass Tran. 10, 219 (1967)CrossRefGoogle Scholar
  3. [3]
    L.E. Erickson, L.T. Fan, V.G. Fox, Ind. Eng. Chem. 5, 19 (1966)CrossRefGoogle Scholar
  4. [4]
    T.S. Chen, F.A. Strobel, J. Heat Trans.-T. ASME 102, 170 (1980)CrossRefGoogle Scholar
  5. [5]
    A. Chakrabarti, A.S. Gupta, Q. Appl. Math. 37, 73 (1979)zbMATHGoogle Scholar
  6. [6]
    K. Vajravelu, A. Hadjinicolaou, Int. J. Eng. Sci. 35, 1237 (1997)zbMATHCrossRefGoogle Scholar
  7. [7]
    S.P. Anjalidevi, R. Kandasamy, Heat Mass Transfer 35, 465 (1999)CrossRefADSGoogle Scholar
  8. [8]
    H.I. Andersson, O.R. Hansen, B. Holmedal, Int. J. Heat Mass Transfer 37, 659 (1994)zbMATHCrossRefGoogle Scholar
  9. [9]
    R. Muthucumaraswamy, P. Ganesan, Forsch. Ingenieurwes. 66, 17 (2000)CrossRefGoogle Scholar
  10. [10]
    U.N. Das, R.K. Deka, V.M. Soundalgekar, Forsch. Ingenieurwes. 60, 284 (1994)CrossRefGoogle Scholar
  11. [11]
    R. Muthucumaraswamy, P. Ganesan, Acta Mech. 147, 45 (2001)zbMATHCrossRefGoogle Scholar
  12. [12]
    R. Muthucumaraswamy, Forsch. Ingenieurwes. 67, 129 (2002)CrossRefGoogle Scholar
  13. [13]
    S.P. Anjalidevi, R. Kandasamy, Z. Angew. Math. Mech. 80, 697 (2000)CrossRefGoogle Scholar
  14. [14]
    A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)CrossRefADSzbMATHGoogle Scholar
  15. [15]
    S.J. Liao, Ph.D. Thesis, Shanghai Jiao Tong University (Shanghai, China, 1992)Google Scholar
  16. [16]
    S.J. Liao, J. Fluid Mech. 385, 101 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. [17]
    S.J. Liao, Int. J. Nonlinear Mech. 34, 759 (1999)zbMATHCrossRefADSGoogle Scholar
  18. [18]
    S.J. Liao, J. Fluid Mech. 488, 189 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton US, 2003)Google Scholar
  20. [20]
    S.J. Liao, Appl. Math. Comput. 147, 499 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    S.J. Liao, Appl. Math. Comput. 169, 1186 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Sajid, T. Hayat, S. Asghar, Nonlinear Dynam. 50, 27 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  23. [23]
    F.M. Allan, Appl. Math. Comput. 190, 6 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    S. Abbasbandy, Phys. Lett. A 360, 109 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. [25]
    S. Abbasbandy, Chem. Eng. J. (in press)Google Scholar
  26. [26]
    F.M. Allan, Chaos Soliton. Fract. (in press)Google Scholar
  27. [27]
    F.M. Allan, M.I. Syam, J. Comput. Appl. Math. 182, 362 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. [28]
    T. Hayat, T. Javed, Phys. Lett. A 370, 243 (2007)CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    M. Sajid, A.M. Siddiqui, T. Hayat, Int. J. Eng. Sci. 45, 381 (2007)CrossRefGoogle Scholar
  30. [30]
    T. Hayat, M. Sajid, Int. J. Heat Mass Tran. 50, 75 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    T. Hayat, Naveed Ahmed, M. Sajid, S. Asghar, Comput. Math. Appl. 54, 407 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    T. Hayat, M. Sajid, M. Ayub, Communications in Nonlinear Science and Numerical Simulation 12, 1481 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [33]
    Yann Bouremel, Communications in Nonlinear Science and Numerical Simulation 12, 714 (2007)zbMATHCrossRefADSGoogle Scholar
  34. [34]
    M. M. Rashidi, G. Domairry, S. Dinarvand, Communications in Nonlinear Science and Numerical Simulation (in press)Google Scholar
  35. [35]
    Z. Ziabakhsh, G. Domairry, Communications in Nonlinear Science and Numerical Simulation (in press)Google Scholar
  36. [36]
    J. Cheng, S.J. Liao, R.N. Mohapatra, K. Vajravelu, J. Math. Anal. Appl. 343, 233 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    T.T. Zhang, L. Jia, Z.C. Wang, X. Li, Phys. Lett. A 372, 3223 (2008)CrossRefADSGoogle Scholar
  38. [38]
    M. M. Rashidi, S. Dinarvand, Nonlinear Anal.-Real (in press)Google Scholar
  39. [39]
    S. Abbasbandy, Z. Angew. Math. Phys. 59, 51 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    S. Abbasbandy, F. Samadian Zakaria, Nonlinear Dynam. 51, 83 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  41. [41]
    S. Abbasbandy, M. Yürüsoyb, M. Pakdemirlic, Z. Naturforsch. A 63, 564 (2008)Google Scholar
  42. [42]
    J.H. He, Int. J. Nonlinear. Mech. 35, 37 (2000)zbMATHCrossRefADSGoogle Scholar
  43. [43]
    J.H. He, Phys. Lett. A 350, 87 (2006)CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    F.T. Akyildiz, H. Bellout, K. Vajravelu, J. Math. Anal. Appl. 320, 322 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentEngineering Faculty of Bu-Ali Sina UniversityHamedanIran

Personalised recommendations