Skip to main content
Log in

Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves Claudianor O., Souto Marco A.S., Soares Sérgio H.M., Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377(2), 584–592

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti A., On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosetti A., Ruiz D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404

    Article  MATH  MathSciNet  Google Scholar 

  4. Azzollini A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 2010, 249(7), 1746–1763

    Article  MATH  MathSciNet  Google Scholar 

  5. Azzollini A., Pomponio A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345(1), 90–108

    Article  MATH  MathSciNet  Google Scholar 

  6. Benci V., Fortunato D., An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal., 1998, 11(2), 283–293

    MATH  MathSciNet  Google Scholar 

  7. Cerami G., Vaira G., Positive solutions for some nonautonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521–543

    Article  MATH  MathSciNet  Google Scholar 

  8. Coclite G.M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(2–3), 417–423

    MATH  MathSciNet  Google Scholar 

  9. D’Aprile T., Mugnai D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect., 2004, 134(5), 893–906

    Article  MATH  MathSciNet  Google Scholar 

  10. D’Aprile T., Mugnai D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307–322

    MATH  MathSciNet  Google Scholar 

  11. D’Avenia P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192

    MATH  MathSciNet  Google Scholar 

  12. D’Avenia P., Pomponio A., Vaira G., Infinitely many positive solutions for a Schrödinger-Poisson system, Appl. Math. Lett., 2011, 24(5), 661–664

    Article  MATH  MathSciNet  Google Scholar 

  13. He X.M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 2011, 62(5), 869–889

    Article  MATH  MathSciNet  Google Scholar 

  14. He X.M., Zou Z.W., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 2012, 53(2), #023702

    Google Scholar 

  15. Ianni I., Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 2009, 19(6), 877–910

    Article  MATH  MathSciNet  Google Scholar 

  16. Ianni I., Vaira G., Solutions of the Schrödinger-Poisson problem concentrating on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci., 2009, 19(5), 707–720

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang Y.S., Zhou H.S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 2011, 251(3), 582–608

    Article  MATH  MathSciNet  Google Scholar 

  18. Kikuchi H., On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 2007, 67(5), 1445–1456

    Article  MATH  MathSciNet  Google Scholar 

  19. Li G.B., Peng S., Wang C.H., Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 2011, 52(5), #053505

    Google Scholar 

  20. Li G.B., Peng S., Yan S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 2010, 12(6), 1069–1092

    Article  MATH  MathSciNet  Google Scholar 

  21. Lins Haendel F., Silva Elves A.B., Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 2009, 71(7–8), 2890–2905

    Article  MATH  MathSciNet  Google Scholar 

  22. Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989

    Google Scholar 

  23. Ruiz D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674

    Article  MATH  MathSciNet  Google Scholar 

  24. Silva Elves A.B., Vieira Gilberto F., Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 2010, 39(1–2), 1–33

    Article  MATH  MathSciNet  Google Scholar 

  25. Sun J.T., Chen H.B., Nieto J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2012, 252(5), 3365–3380

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun J.T., Chen H.B., Yang L., Positive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74(2), 413–423

    Article  MATH  MathSciNet  Google Scholar 

  27. Szulkin A., Weth T., The Method of Nehari Manifold, Gao D.Y. and Motreanu D. (Eds.), Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, 597–632

    Google Scholar 

  28. Vaira G., Ground states for Schrödinger-Poisson type systems, Ricerche mat., 2011, 60(2), 263–297

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang J., Tian L.X., Xu J.X., Zhang F.B., Existence and concentration of positive ground state solutions for Schrödinger-Poisson systems, Adv. Nonlinear Stud., 2013, 13(3), 553–582

    MATH  MathSciNet  Google Scholar 

  30. Wang Z.P., Zhou H.S., Positive solution for a nonlinear stationary Schrödinger-Poisson system in ℝ3, Discrete Contin. Dyn. Syst., 2007, 18(4), 809–816

    Article  MATH  MathSciNet  Google Scholar 

  31. Willem M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser, Basel, 1996

    Google Scholar 

  32. Yang M.H., Han Z.Q., Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems, Nonlinear Anal. Real World Appl., 2012, 13(3), 1093–1101

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang H., Xu J.X., Zhang F.B., Positive ground states for asymptotically periodic Schrödinger-Poisson systems, Math. Meth. Appl. Sci., 2013, 36(4), 427–439

    Article  MATH  Google Scholar 

  34. Zhao L.G., Zhao F.K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear. Anal., 2009, 70(6), 2150–2164

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, J., Zhang, F. et al. Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth. centr.eur.j.math. 12, 1484–1499 (2014). https://doi.org/10.2478/s11533-014-0426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0426-x

MSC

Keywords

Navigation