Skip to main content
Log in

Three solutions to discrete anisotropic problems with two parameters

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, K. Perera, and D. O’Regan. Multiple positive solutions of singular discrete p-laplacian problems via variational methods. Adv. Difference Equ., 2:93–99, 2005.

    MathSciNet  Google Scholar 

  2. C. Bereanu, P. Jebelean, and C. Serban. Ground state and mountain pass solutions for discrete p(·)-laplacian. Bound. Value Probl., 2012:104, 2012.

    Article  MathSciNet  Google Scholar 

  3. C. Bereanu, P. Jebelean, and C. Serban. Periodic and neumann problems for discrete p(·)-laplacian. J. Math. Anal. Appl., 399:75–87, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Molica Bisci and G. Bonanno. Three weak solutions for elliptic dirichlet problems. J. Math. Anal. Appl., 382:1–8, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Bonanno. A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appl, 270:210–229, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Bonanno and A. Chinně. Existence of three solutions for a perturbed two-point boundary value problem. Appl. Math. Lett., 23(7):807–811, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Cabada and A. Iannizzotto. A note on a question of ricceri. Appl. Math. Lett., 25:215–219, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Cabada, A. Iannizzotto, and S. Tersian. Multiple solutions for discrete boundary value problems. J. Math. Anal. Appl., 356(2):418–428, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  9. X. Cai and J. Yu. Existence theorems of periodic solutions for second-order nonlinear difference equations. Adv. Difference Equ., 2008.

    Google Scholar 

  10. Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math., 66(4):1383–1406, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. X.L. Fan and H. Zhang. Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal. Theory Methods Appl., 2003.

    Google Scholar 

  12. M. Galewski and R. Wieteska. A note on the multiplicity of solutions to anisotropic discrete BVP’s. Appl. Math. Lett., 26:524–529, 2012.

    Article  MathSciNet  Google Scholar 

  13. P. Harjulehto, P. Hästö, U. V. Le, and M. Nuortio. Overview of differential equations with non-standard growth. Nonlinear Anal., 72:4551–4574, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Kone and S. Ouaro. Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 17:1537–1547, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.Q. Liu and J.B. Su. Remarks on multiple nontrivial solutions for quasi-linear resonant problemes. J. Math. Anal. Appl., 258:209–222, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Mihǎilescu, V. Rǎdulescu, and S. Tersian. Eigenvalue problems for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 15(6):557–567, 2009.

    Article  MathSciNet  Google Scholar 

  17. B. Ricceri. A general variational principle and some of its applications. J. Comput. Appl. Math., 113:401–410, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Ricceri. On a three critical points theorem. Arch. Math. (Basel), 75:220–226, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Ricceri. A further three critical points theorem. Nonlinear Anal., 2009.

    Google Scholar 

  20. B. Ricceri. A three critical points theorem revisited. Nonlinear Anal., 70:3084–3089, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Ricceri. A further refinement of a three critical points theorem. Nonlinear Anal., 74(18):7446–7454, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Růžička. Electrorheological fluids: Modelling and mathematical theory. Lecture Notes in Mathematics, 1748, 2000.

    Google Scholar 

  23. J. Zhang Y. Yang. Existence of solution for some discrete value problems with a parameter. Appl. Math. Comput., 211:293–302, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Zhang. Existence of non-zero solutions for a nonlinear system with a parameter. Nonlinear Anal., 66(6):1400–1416, 2007.

    Article  Google Scholar 

  25. G. Zhang and S.S. Cheng. Existence of solutions for a nonlinear system with a parameter. J. Math. Anal. Appl., 314(1):311–319, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  26. V.V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv., 29:33–66, 1987.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Galewski.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galewski, M., Kowalski, P. Three solutions to discrete anisotropic problems with two parameters. centr.eur.j.math. 12, 1403–1415 (2014). https://doi.org/10.2478/s11533-014-0425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0425-y

MSC

Keywords

Navigation