Skip to main content
Log in

Countable contraction mappings in metric spaces: invariant sets and measure

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i : i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i (x) = r i x + b i on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = sup i r i is strictly smaller than 1.

Further, if ρ = {ρ k } k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandt C., Self-similar sets. I. Topological Markov chains and mixed self-similar sets, Math. Nachr., 1989, 142, 107–123

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275

    Article  MATH  MathSciNet  Google Scholar 

  3. Falconer K.J., The Geometry of Fractal Sets, Cambridge Tracts in Math., 85, Cambridge University Press, Cambridge, 1986

    Google Scholar 

  4. Falconer K., Fractal Geometry, John Wiley & Sons, Chichester, 1990

    MATH  Google Scholar 

  5. Hille M.R., Remarks on limit sets of infinite iterated function systems, Monatsh. Math., 2012, 168(2), 215–237

    Article  MATH  MathSciNet  Google Scholar 

  6. Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747

    Article  MATH  MathSciNet  Google Scholar 

  7. Kravchenko A.S., Completeness of the space of separable measures in the Kantorovich-Rubinshtein metric, Siberian Math. J., 2006, 47(1), 68–76

    Article  MathSciNet  Google Scholar 

  8. Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 44, Cambridge University Press, Cambridge, 1995

    Book  MATH  Google Scholar 

  9. Mauldin R.D., Infinite iterated function systems: theory and applications, In: Fractal Geometry and Stochastics, Progr. Probab., 37, Birkhäuser, Basel, 1995, 91–110

    Chapter  Google Scholar 

  10. Mauldin R.D., Urbanski M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 1996, 73(1), 105–154

    Article  MATH  MathSciNet  Google Scholar 

  11. Mauldin R.D., Williams S.C., Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc., 1986, 295(1), 325–346

    Article  MATH  MathSciNet  Google Scholar 

  12. Mihail A., Miculescu R., The shift space for an infinite iterated function system, Math. Rep. (Bucur.), 2009, 11(61)(1), 21–32

    MathSciNet  Google Scholar 

  13. Secelean N.A., The existence of the attractor of countable iterated function systems, Mediterr. J. Math., 2012, 9(1), 61–79

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Barrozo.

About this article

Cite this article

Barrozo, M.F., Molter, U. Countable contraction mappings in metric spaces: invariant sets and measure. centr.eur.j.math. 12, 593–602 (2014). https://doi.org/10.2478/s11533-013-0371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-013-0371-0

MSC

Keywords

Navigation